語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Computational diffusion MRIMICCAI Wo...
~
(1998 :)
Computational diffusion MRIMICCAI Workshop, Quebec, Canada, September 2017 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Computational diffusion MRIedited by Enrico Kaden ... [et al.].
其他題名:
MICCAI Workshop, Quebec, Canada, September 2017 /
其他作者:
Kaden, Enrico.
團體作者:
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xi, 245 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Diffusion magnetic resonance imagingCongresses.
電子資源:
http://dx.doi.org/10.1007/978-3-319-73839-0
ISBN:
9783319738390$q(electronic bk.)
Computational diffusion MRIMICCAI Workshop, Quebec, Canada, September 2017 /
Computational diffusion MRI
MICCAI Workshop, Quebec, Canada, September 2017 /[electronic resource] :edited by Enrico Kaden ... [et al.]. - Cham :Springer International Publishing :2018. - xi, 245 p. :ill., digital ;24 cm. - Mathematics and visualization,1612-3786. - Mathematics and visualization..
Part I Data Acquisition and Modeling: Estimating Tissue Microstructure using Diffusion-Weighted Magnetic Resonance Spectroscopy of Brain Metabolites by Marco Palombo -- (k, q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior by Evan Schwab et al -- Spatio-Temporal dMRI Acquisition Design: Reducing the Number of qτ Samples Through a Relaxed Probabilistic Model by Patryk Filipiak et al -- A Generalized SMT-Based Framework for Diffusion MRI Microstructural Model Estimation by Mauro Zucchelli et al -- Part II Image Postprocessing: Diffusion Specific Segmentation: Skull Stripping with Diffusion MRIData Alone by Robert I. Reid et al -- Diffeomorphic Registration of Diffusion Mean Apparent Propagator Fields Using Dynamic Programming on a Minimum Spanning Tree by K'evin Ginsburger et al -- Diffusion Orientation Histograms (DOH) for Diffusion Weighted Image Analysis by Laurent Chauvin et al -- Part III Tractography and Connectivity: Learning a Single Step of Streamline Tractography Based on Neural Networks by Daniel Jorgens et al -- Probabilistic Tractography for Complex Fiber Orientations with Automatic Model Selection by Edwin Versteeg et al -- Bundle-Specific Tractography by Francois Rheault et al -- A Sheet Probability Index from Diffusion Tensor Imaging by Michael Ankele et al -- Recovering Missing Connections in Diffusion Weighted MRI Using Matrix Completion by Chendi Wang et al -- Brain Parcellation and Connectivity Mapping Using Wasserstein Geometry by Hamza Farooq et al -- Exploiting Machine Learning Principles for Assessing the Fingerprinting Potential of Connectivity Features by Silvia Obertino et al -- Part IV Clinical Applications: Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players by Itay Benou et al -- Longitudinal Analysis Framework of DWI Data for Reconstructing Structural Brain Networks with Application to Multiple Sclerosis by Thalis Charalambous et al -- Multi-Modal Analysis of Genetically-Related Subjects Using SIFT Descriptors in Brain MRI by Kuldeep Kumar et al -- VERDICT Prostate Parameter Estimation with AMICO by Elisenda Bonet-Carne et al.
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI'17) held in Quebec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics.
ISBN: 9783319738390$q(electronic bk.)
Standard No.: 10.1007/978-3-319-73839-0doiSubjects--Topical Terms:
745052
Diffusion magnetic resonance imaging
--Congresses.
LC Class. No.: RC386.6.M34 / C667 2017
Dewey Class. No.: 570.285
Computational diffusion MRIMICCAI Workshop, Quebec, Canada, September 2017 /
LDR
:04390nmm a2200325 a 4500
001
533949
003
DE-He213
005
20181011150447.0
006
m d
007
cr nn 008maaau
008
181205s2018 gw s 0 eng d
020
$a
9783319738390$q(electronic bk.)
020
$a
9783319738383$q(paper)
024
7
$a
10.1007/978-3-319-73839-0
$2
doi
035
$a
978-3-319-73839-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC386.6.M34
$b
C667 2017
072
7
$a
PDE
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
570.285
$2
23
090
$a
RC386.6.M34
$b
C386 2017
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Computational diffusion MRI
$h
[electronic resource] :
$b
MICCAI Workshop, Quebec, Canada, September 2017 /
$c
edited by Enrico Kaden ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xi, 245 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Mathematics and visualization,
$x
1612-3786
505
0
$a
Part I Data Acquisition and Modeling: Estimating Tissue Microstructure using Diffusion-Weighted Magnetic Resonance Spectroscopy of Brain Metabolites by Marco Palombo -- (k, q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior by Evan Schwab et al -- Spatio-Temporal dMRI Acquisition Design: Reducing the Number of qτ Samples Through a Relaxed Probabilistic Model by Patryk Filipiak et al -- A Generalized SMT-Based Framework for Diffusion MRI Microstructural Model Estimation by Mauro Zucchelli et al -- Part II Image Postprocessing: Diffusion Specific Segmentation: Skull Stripping with Diffusion MRIData Alone by Robert I. Reid et al -- Diffeomorphic Registration of Diffusion Mean Apparent Propagator Fields Using Dynamic Programming on a Minimum Spanning Tree by K'evin Ginsburger et al -- Diffusion Orientation Histograms (DOH) for Diffusion Weighted Image Analysis by Laurent Chauvin et al -- Part III Tractography and Connectivity: Learning a Single Step of Streamline Tractography Based on Neural Networks by Daniel Jorgens et al -- Probabilistic Tractography for Complex Fiber Orientations with Automatic Model Selection by Edwin Versteeg et al -- Bundle-Specific Tractography by Francois Rheault et al -- A Sheet Probability Index from Diffusion Tensor Imaging by Michael Ankele et al -- Recovering Missing Connections in Diffusion Weighted MRI Using Matrix Completion by Chendi Wang et al -- Brain Parcellation and Connectivity Mapping Using Wasserstein Geometry by Hamza Farooq et al -- Exploiting Machine Learning Principles for Assessing the Fingerprinting Potential of Connectivity Features by Silvia Obertino et al -- Part IV Clinical Applications: Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players by Itay Benou et al -- Longitudinal Analysis Framework of DWI Data for Reconstructing Structural Brain Networks with Application to Multiple Sclerosis by Thalis Charalambous et al -- Multi-Modal Analysis of Genetically-Related Subjects Using SIFT Descriptors in Brain MRI by Kuldeep Kumar et al -- VERDICT Prostate Parameter Estimation with AMICO by Elisenda Bonet-Carne et al.
520
$a
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI'17) held in Quebec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics.
650
0
$a
Diffusion magnetic resonance imaging
$v
Congresses.
$3
745052
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Mathematical and Computational Biology.
$3
514442
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
274067
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
274020
650
2 4
$a
Computational Biology/Bioinformatics.
$3
274833
650
2 4
$a
Image Processing and Computer Vision.
$3
274051
700
1
$a
Kaden, Enrico.
$3
809936
710
2
$a
SpringerLink (Online service)
$3
273601
711
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
773
0
$t
Springer eBooks
830
0
$a
Mathematics and visualization.
$3
560060
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-73839-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000154539
電子館藏
1圖書
電子書
EB RC386.6.M34 C386 2017 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-73839-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入