語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Non-volatile in-memory computing by ...
~
Ni, Leibin,
Non-volatile in-memory computing by spintronics /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Non-volatile in-memory computing by spintronics /Hao Yu, Leibin Ni, Yuhao Wang
作者:
Yu, Hao
其他作者:
Ni, Leibin,
面頁冊數:
1 online resource (xiii, 147 pages) :illustrations (some color)
標題:
SpintronicsCongresses.
電子資源:
http://portal.igpublish.com/iglibrary/search/MCPB0006290.html
ISBN:
9781627056441$q(ebook)
Non-volatile in-memory computing by spintronics /
Yu, Hao(Electrical engineer),
Non-volatile in-memory computing by spintronics /
Hao Yu, Leibin Ni, Yuhao Wang - 1 online resource (xiii, 147 pages) :illustrations (some color) - Synthesis lectures on emerging engineering technologies,2381-. - Synthesis lectures on emerging engineering technologies ;#8. .
Includes bibliographical references and index
1. Introduction -- 1.1 Memory wall -- 1.2 Traditional semiconductor memory -- 1.2.1 Overview -- 1.2.2 Nano-scale limitations -- 1.3 Non-volatile spintronic memory -- 1.3.1 Basic magnetization process -- 1.3.2 Magnetization damping -- 1.3.3 Spin-transfer torque -- 1.3.4 Magnetization dynamics -- 1.3.5 Domain wall propagation -- 1.4 Traditional memory architecture -- 1.5 Non-volatile in-memory computing architecture -- 1.6 References --
Exa-scale computing needs to re-examine the existing hardware platform that can support intensive data-oriented computing. Since the main bottleneck is from memory, we aim to develop an energy-efficient in-memory computing platform in this book. First, the models of spin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronics could be a candidate for future data-oriented computing for storage, logic, and interconnect. As a result, by utilizing spintronics, in-memory-based computing has been applied for data encryption and machine learning. The implementations of in-memory AES, Simon cipher, as well as interconnect are explained in details. In addition, in-memory-based machine learning and face recognition are also illustrated in this book
ISBN: 9781627056441$q(ebook)
Standard No.: 10.2200 / S00736ED1V01Y201609EET008doiSubjects--Topical Terms:
440047
Spintronics
--Congresses.Subjects--Index Terms:
SpintronicsIndex Terms--Genre/Form:
298895
Electronic books
LC Class. No.: TK7874.887 / .Y85 2017
Dewey Class. No.: 621.3
Non-volatile in-memory computing by spintronics /
LDR
:04664nmm0a2200481 ib450
001
535766
005
20181023221158.0
006
m o d
007
cr cnu---unuuu
008
181217t20172017caua fob 001 0 eng d
020
$a
9781627056441$q(ebook)
020
$a
1627056440$q(ebook)
020
$z
9781627052948$q(paperback)
024
7
$a
10.2200 / S00736ED1V01Y201609EET008
$2
doi
035
$a
IGP290276
040
$a
CaBNVSL
$b
eng
$e
rda
$e
pn
$c
J2I
$d
J2I
$d
WAU
$d
EBLCP
$d
YDX
$d
UIU
$d
OCLCF
$d
NTBC
050
4
$a
TK7874.887
$b
.Y85 2017
082
0 4
$a
621.3
$2
23
100
1
$a
Yu, Hao
$c
(Electrical engineer),
$e
author
$3
805139
245
1 0
$a
Non-volatile in-memory computing by spintronics /
$c
Hao Yu, Leibin Ni, Yuhao Wang
264
1
$a
[San Rafael, California] :
$b
Morgan & Claypool Publishers,
$c
[2017]
264
4
$c
c2017
300
$a
1 online resource (xiii, 147 pages) :
$b
illustrations (some color)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
0
$a
Synthesis lectures on emerging engineering technologies,
$x
2381-
504
$a
Includes bibliographical references and index
505
0
$a
1. Introduction -- 1.1 Memory wall -- 1.2 Traditional semiconductor memory -- 1.2.1 Overview -- 1.2.2 Nano-scale limitations -- 1.3 Non-volatile spintronic memory -- 1.3.1 Basic magnetization process -- 1.3.2 Magnetization damping -- 1.3.3 Spin-transfer torque -- 1.3.4 Magnetization dynamics -- 1.3.5 Domain wall propagation -- 1.4 Traditional memory architecture -- 1.5 Non-volatile in-memory computing architecture -- 1.6 References --
505
8
$a
2. Non-volatile spintronic device and circuit -- 2.1 SPICE formulation with new nano-scale NVM devices -- 2.1.1 Traditional modified nodal analysis -- 2.1.2 New MNA with non-volatile state variables -- 2.2 STT-MTJ device and model -- 2.2.1 STT-MTJ -- 2.2.2 STT-RAM -- 2.2.3 Topological insulator -- 2.3 Domain wall device and model -- 2.3.1 Magnetization reversal -- 2.3.2 MTJ resistance -- 2.3.3 Domain wall propagation -- 2.3.4 Circular domain wall nanowire -- 2.4 Spintronic storage -- 2.4.1 Spintronic memory -- 2.4.2 Spintronic readout -- 2.5 Spintronic logic -- 2.5.1 XOR -- 2.5.2 Adder -- 2.5.3 Multiplier -- 2.5.4 LUT -- 2.6 Spintronic interconnect -- 2.6.1 Coding-based interconnect -- 2.6.2 Domain wall-based encoder/decoder -- 2.6.3 Performance evaluation -- 2.7 References --
505
8
$a
3. In-memory data encryption -- 3.1 In-memory advanced encryption standard -- 3.1.1 Fundamental of AES -- 3.1.2 Domain wall nanowire-based AES computing -- 3.1.3 Pipelined AES by domain wall nanowire -- 3.1.4 Performance evaluation -- 3.2 Domain wall-based SIMON block cipher -- 3.2.1 Fundamental of SIMON block cipher -- 3.2.2 Hardware stages -- 3.2.3 Round counter -- 3.2.4 Control signals -- 3.2.5 Key expansion -- 3.2.6 Encryption -- 3.2.7 Performance evaluation -- 3.3 References --
505
8
$a
4. In-memory data analytics -- 4.1 In-memory machine learning - - 4.1.1 Extreme learning machine -- 4.1.2 MapReduce-based matrix multiplication -- 4.1.3 Domain wall-based hardware mapping -- 4.1.4 Performance evaluation -- 4.2 In-memory face recognition -- 4.2.1 Energy-efficient STT-MRAM with Spare-represented data -- 4.2.2 QoS-aware adaptive current scaling -- 4.2.3 STT-RAM based hardware mapping -- 4.2.4 Performance evaluation -- 4.3 References -- Authors' biographies
520
3
$a
Exa-scale computing needs to re-examine the existing hardware platform that can support intensive data-oriented computing. Since the main bottleneck is from memory, we aim to develop an energy-efficient in-memory computing platform in this book. First, the models of spin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronics could be a candidate for future data-oriented computing for storage, logic, and interconnect. As a result, by utilizing spintronics, in-memory-based computing has been applied for data encryption and machine learning. The implementations of in-memory AES, Simon cipher, as well as interconnect are explained in details. In addition, in-memory-based machine learning and face recognition are also illustrated in this book
588
$a
Online resource; title from PDF title page (Morgan & Claypool, viewed on December 5, 2016)
650
0
$a
Spintronics
$v
Congresses.
$3
440047
650
0
$a
Nonvolatile random-access memory
$3
805143
653
$a
Spintronics
653
$a
in-memory computing
653
$a
non-volatile memory
653
$a
logic-memory integration
653
$a
data encryption
653
$a
AES
653
$a
machine learning
653
$a
data analytics
653
$a
hardware accelerator
655
4
$a
Electronic books
$2
local.
$3
298895
700
1
$a
Ni, Leibin,
$e
author
$3
805140
700
1
$a
Wang, Yuhao
$c
(Electrical engineer),
$e
author
$3
805141
776
0 8
$i
Print version:
$z
9781627052948
830
0
$a
Synthesis lectures on emerging engineering technologies ;
$v
#8.
$x
2381-1412
$3
805142
856
4 0
$u
http://portal.igpublish.com/iglibrary/search/MCPB0006290.html
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000156508
電子館藏
1圖書
電子書
EB TK7874.887 Y85 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://portal.igpublish.com/iglibrary/search/MCPB0006290.html
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入