語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Structurally unstable quadratic vect...
~
Artes, Joan C.
Structurally unstable quadratic vector fields of codimension one
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Structurally unstable quadratic vector fields of codimension oneby Joan C. Artes, Jaume Llibre, Alex C. Rezende.
作者:
Artes, Joan C.
其他作者:
Llibre, Jaume.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
vi, 267 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Differential equations.
電子資源:
http://dx.doi.org/10.1007/978-3-319-92117-4
ISBN:
9783319921174$q(electronic bk.)
Structurally unstable quadratic vector fields of codimension one
Artes, Joan C.
Structurally unstable quadratic vector fields of codimension one
[electronic resource] /by Joan C. Artes, Jaume Llibre, Alex C. Rezende. - Cham :Springer International Publishing :2018. - vi, 267 p. :ill. (some col.), digital ;24 cm.
Introduction -- Preliminary definitions -- Some preliminary tools -- A summary for the structurally stable quadratic vector fields -- Proof of Theorem 1.1(a) -- Proof of Theorem 1.1(b) -- Bibliography.
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincare disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them.
ISBN: 9783319921174$q(electronic bk.)
Standard No.: 10.1007/978-3-319-92117-4doiSubjects--Topical Terms:
183925
Differential equations.
LC Class. No.: QA372 / .A783 2018
Dewey Class. No.: 515.352
Structurally unstable quadratic vector fields of codimension one
LDR
:01686nmm a2200313 a 4500
001
540780
003
DE-He213
005
20190109173446.0
006
m d
007
cr nn 008maaau
008
190308s2018 gw s 0 eng d
020
$a
9783319921174$q(electronic bk.)
020
$a
9783319921167$q(paper)
024
7
$a
10.1007/978-3-319-92117-4
$2
doi
035
$a
978-3-319-92117-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA372
$b
.A783 2018
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
515.352
$2
23
090
$a
QA372
$b
.A786 2018
100
1
$a
Artes, Joan C.
$3
819232
245
1 0
$a
Structurally unstable quadratic vector fields of codimension one
$h
[electronic resource] /
$c
by Joan C. Artes, Jaume Llibre, Alex C. Rezende.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhauser,
$c
2018.
300
$a
vi, 267 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Introduction -- Preliminary definitions -- Some preliminary tools -- A summary for the structurally stable quadratic vector fields -- Proof of Theorem 1.1(a) -- Proof of Theorem 1.1(b) -- Bibliography.
520
$a
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincare disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them.
650
0
$a
Differential equations.
$3
183925
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Ordinary Differential Equations.
$3
273778
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
700
1
$a
Llibre, Jaume.
$3
261593
700
1
$a
Rezende, Alex C.
$3
819233
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-92117-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000160537
電子館藏
1圖書
電子書
EB QA372 A786 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-92117-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入