語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning for dynamic softwar...
~
Bennaceur, Amel.
Machine learning for dynamic software analysispotentials and limits : International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016 : revised papers /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning for dynamic software analysisedited by Amel Bennaceur, Reiner Hahnle, Karl Meinke.
其他題名:
potentials and limits : International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016 : revised papers /
其他作者:
Bennaceur, Amel.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
ix, 257 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learningCongresses.
電子資源:
http://dx.doi.org/10.1007/978-3-319-96562-8
ISBN:
9783319965628$q(electronic bk.)
Machine learning for dynamic software analysispotentials and limits : International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016 : revised papers /
Machine learning for dynamic software analysis
potentials and limits : International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016 : revised papers /[electronic resource] :edited by Amel Bennaceur, Reiner Hahnle, Karl Meinke. - Cham :Springer International Publishing :2018. - ix, 257 p. :ill., digital ;24 cm. - Lecture notes in computer science,110260302-9743 ;. - Lecture notes in computer science ;4891..
Introduction -- Testing and Learning -- Extensions of Automata Learning -- Integrative Approaches.
Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits" held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches.
ISBN: 9783319965628$q(electronic bk.)
Standard No.: 10.1007/978-3-319-96562-8doiSubjects--Topical Terms:
384498
Machine learning
--Congresses.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Machine learning for dynamic software analysispotentials and limits : International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016 : revised papers /
LDR
:02541nmm a2200337 a 4500
001
542825
003
DE-He213
005
20180720151925.0
006
m d
007
cr nn 008maaau
008
190411s2018 gw s 0 eng d
020
$a
9783319965628$q(electronic bk.)
020
$a
9783319965611$q(paper)
024
7
$a
10.1007/978-3-319-96562-8
$2
doi
035
$a
978-3-319-96562-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UMZ
$2
bicssc
072
7
$a
UL
$2
bicssc
072
7
$a
COM051230
$2
bisacsh
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M149 2018
245
0 0
$a
Machine learning for dynamic software analysis
$h
[electronic resource] :
$b
potentials and limits : International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016 : revised papers /
$c
edited by Amel Bennaceur, Reiner Hahnle, Karl Meinke.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
ix, 257 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
11026
505
0
$a
Introduction -- Testing and Learning -- Extensions of Automata Learning -- Integrative Approaches.
520
$a
Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits" held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches.
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Software Engineering/Programming and Operating Systems.
$3
273711
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Theory of Computation.
$3
274475
700
1
$a
Bennaceur, Amel.
$3
820732
700
1
$a
Hahnle, Reiner.
$3
260189
700
1
$a
Meinke, Karl.
$3
466285
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-96562-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000160948
電子館藏
1圖書
電子書
EB Q325.5 M149 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-96562-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入