語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Supervised learning with quantum com...
~
Petruccione, Francesco.
Supervised learning with quantum computers
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Supervised learning with quantum computersby Maria Schuld, Francesco Petruccione.
作者:
Schuld, Maria.
其他作者:
Petruccione, Francesco.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xiii, 287 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Quantum theory.
電子資源:
https://doi.org/10.1007/978-3-319-96424-9
ISBN:
9783319964249$q(electronic bk.)
Supervised learning with quantum computers
Schuld, Maria.
Supervised learning with quantum computers
[electronic resource] /by Maria Schuld, Francesco Petruccione. - Cham :Springer International Publishing :2018. - xiii, 287 p. :ill., digital ;24 cm. - Quantum science and technology,2364-9054. - Quantum science and technology..
Introduction -- Background -- How quantum computers can classify data -- Organisation of the book -- Machine Learning -- Prediction -- Models -- Training -- Methods in machine learning -- Quantum Information -- Introduction to quantum theory -- Introduction to quantum computing -- An example: The Deutsch-Josza algorithm -- Strategies of information encoding -- Important quantum routines -- Quantum advantages -- Computational complexity of learning -- Sample complexity -- Model complexity -- Information encoding -- Basis encoding -- Amplitude encoding -- Qsample encoding -- Hamiltonian encoding -- Quantum computing for inference -- Linear models -- Kernel methods -- Probabilistic models -- Quantum computing for training -- Quantum blas -- Search and amplitude amplification -- Hybrid training for variational algorithms -- Quantum adiabatic machine learning -- Learning with quantum models -- Quantum extensions of Ising-type models -- Variational classifiers and neural networks -- Other approaches to build quantum models -- Prospects for near-term quantum machine learning -- Small versus big data -- Hybrid versus fully coherent approaches -- Qualitative versus quantitative advantages -- What machine learning can do for quantum computing -- References.
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ''quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
ISBN: 9783319964249$q(electronic bk.)
Standard No.: 10.1007/978-3-319-96424-9doiSubjects--Topical Terms:
199020
Quantum theory.
LC Class. No.: Q325.5 / .S385 2018
Dewey Class. No.: 006.31
Supervised learning with quantum computers
LDR
:03121nmm a2200337 a 4500
001
544090
003
DE-He213
005
20190305131516.0
006
m d
007
cr nn 008maaau
008
190430s2018 gw s 0 eng d
020
$a
9783319964249$q(electronic bk.)
020
$a
9783319964232$q(paper)
024
7
$a
10.1007/978-3-319-96424-9
$2
doi
035
$a
978-3-319-96424-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.S385 2018
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
PHQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.S386 2018
100
1
$a
Schuld, Maria.
$3
822586
245
1 0
$a
Supervised learning with quantum computers
$h
[electronic resource] /
$c
by Maria Schuld, Francesco Petruccione.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiii, 287 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Quantum science and technology,
$x
2364-9054
505
0
$a
Introduction -- Background -- How quantum computers can classify data -- Organisation of the book -- Machine Learning -- Prediction -- Models -- Training -- Methods in machine learning -- Quantum Information -- Introduction to quantum theory -- Introduction to quantum computing -- An example: The Deutsch-Josza algorithm -- Strategies of information encoding -- Important quantum routines -- Quantum advantages -- Computational complexity of learning -- Sample complexity -- Model complexity -- Information encoding -- Basis encoding -- Amplitude encoding -- Qsample encoding -- Hamiltonian encoding -- Quantum computing for inference -- Linear models -- Kernel methods -- Probabilistic models -- Quantum computing for training -- Quantum blas -- Search and amplitude amplification -- Hybrid training for variational algorithms -- Quantum adiabatic machine learning -- Learning with quantum models -- Quantum extensions of Ising-type models -- Variational classifiers and neural networks -- Other approaches to build quantum models -- Prospects for near-term quantum machine learning -- Small versus big data -- Hybrid versus fully coherent approaches -- Qualitative versus quantitative advantages -- What machine learning can do for quantum computing -- References.
520
$a
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ''quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
650
0
$a
Quantum theory.
$3
199020
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Quantum Physics.
$3
275010
650
2 4
$a
Quantum Computing.
$3
573152
650
2 4
$a
Pattern Recognition.
$3
273706
650
2 4
$a
Quantum Information Technology, Spintronics.
$3
379903
650
2 4
$a
Numerical and Computational Physics, Simulation.
$3
758154
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
700
1
$a
Petruccione, Francesco.
$3
467638
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Quantum science and technology.
$3
675078
856
4 0
$u
https://doi.org/10.1007/978-3-319-96424-9
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000161735
電子館藏
1圖書
電子書
EB Q325.5 .S386 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-319-96424-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入