Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Nonlinear adiabatic evolution of qua...
~
Liu, Jie.
Nonlinear adiabatic evolution of quantum systemsgeometric phase and virtual magnetic monopole /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Nonlinear adiabatic evolution of quantum systemsby Jie Liu ... [et al.].
Reminder of title:
geometric phase and virtual magnetic monopole /
other author:
Liu, Jie.
Published:
Singapore :Springer Singapore :2018.
Description:
ix, 190 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Adiabatic invariants.
Online resource:
https://doi.org/10.1007/978-981-13-2643-1
ISBN:
9789811326431$q(electronic bk.)
Nonlinear adiabatic evolution of quantum systemsgeometric phase and virtual magnetic monopole /
Nonlinear adiabatic evolution of quantum systems
geometric phase and virtual magnetic monopole /[electronic resource] :by Jie Liu ... [et al.]. - Singapore :Springer Singapore :2018. - ix, 190 p. :ill., digital ;24 cm.
Introduction to adiabatic evolution -- Nonlinear adiabatic evolution of quantum systems -- Quantum-classical correspondence of an interacting bosonic many-body system -- Exotic virtual magnetic monopoles and fields -- Applications of nonlinear adiabatic evolution.
This book systematically introduces the nonlinear adiabatic evolution theory of quantum many-body systems. The nonlinearity stems from a mean-field treatment of the interactions between particles, and the adiabatic dynamics of the system can be accurately described by the nonlinear Schrodinger equation. The key points in this book include the adiabatic condition and adiabatic invariant for nonlinear system; the adiabatic nonlinear Berry phase; and the exotic virtual magnetic field, which gives the geometric meaning of the nonlinear Berry phase. From the quantum-classical correspondence, the linear and nonlinear comparison, and the single particle and interacting many-body difference perspectives, it shows a distinct picture of adiabatic evolution theory. It also demonstrates the applications of the nonlinear adiabatic evolution theory for various physical systems. Using simple models it illustrates the basic points of the theory, which are further employed for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
ISBN: 9789811326431$q(electronic bk.)
Standard No.: 10.1007/978-981-13-2643-1doiSubjects--Topical Terms:
558078
Adiabatic invariants.
LC Class. No.: QC20.7.A34
Dewey Class. No.: 530.12
Nonlinear adiabatic evolution of quantum systemsgeometric phase and virtual magnetic monopole /
LDR
:02427nmm a2200325 a 4500
001
544092
003
DE-He213
005
20190305144244.0
006
m d
007
cr nn 008maaau
008
190430s2018 si s 0 eng d
020
$a
9789811326431$q(electronic bk.)
020
$a
9789811326424$q(paper)
024
7
$a
10.1007/978-981-13-2643-1
$2
doi
035
$a
978-981-13-2643-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC20.7.A34
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
PHQ
$2
thema
082
0 4
$a
530.12
$2
23
090
$a
QC20.7.A34
$b
N813 2018
245
0 0
$a
Nonlinear adiabatic evolution of quantum systems
$h
[electronic resource] :
$b
geometric phase and virtual magnetic monopole /
$c
by Jie Liu ... [et al.].
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2018.
300
$a
ix, 190 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction to adiabatic evolution -- Nonlinear adiabatic evolution of quantum systems -- Quantum-classical correspondence of an interacting bosonic many-body system -- Exotic virtual magnetic monopoles and fields -- Applications of nonlinear adiabatic evolution.
520
$a
This book systematically introduces the nonlinear adiabatic evolution theory of quantum many-body systems. The nonlinearity stems from a mean-field treatment of the interactions between particles, and the adiabatic dynamics of the system can be accurately described by the nonlinear Schrodinger equation. The key points in this book include the adiabatic condition and adiabatic invariant for nonlinear system; the adiabatic nonlinear Berry phase; and the exotic virtual magnetic field, which gives the geometric meaning of the nonlinear Berry phase. From the quantum-classical correspondence, the linear and nonlinear comparison, and the single particle and interacting many-body difference perspectives, it shows a distinct picture of adiabatic evolution theory. It also demonstrates the applications of the nonlinear adiabatic evolution theory for various physical systems. Using simple models it illustrates the basic points of the theory, which are further employed for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
650
0
$a
Adiabatic invariants.
$3
558078
650
0
$a
Geometric quantum phases.
$3
811728
650
1 4
$a
Quantum Physics.
$3
275010
650
2 4
$a
Statistical Physics and Dynamical Systems.
$3
760415
650
2 4
$a
Quantum Gases and Condensates.
$3
492482
700
1
$a
Liu, Jie.
$3
675635
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-2643-1
950
$a
Physics and Astronomy (Springer-11651)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000161737
電子館藏
1圖書
電子書
EB QC20.7.A34 N813 2018 2018
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-981-13-2643-1
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login