語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Foraging-inspired optimisation algor...
~
Brabazon, Anthony.
Foraging-inspired optimisation algorithms
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Foraging-inspired optimisation algorithmsby Anthony Brabazon, Sean McGarraghy.
作者:
Brabazon, Anthony.
其他作者:
McGarraghy, Sean.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xviii, 478 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Mathematical optimization.
電子資源:
https://doi.org/10.1007/978-3-319-59156-8
ISBN:
9783319591568$q(electronic bk.)
Foraging-inspired optimisation algorithms
Brabazon, Anthony.
Foraging-inspired optimisation algorithms
[electronic resource] /by Anthony Brabazon, Sean McGarraghy. - Cham :Springer International Publishing :2018. - xviii, 478 p. :ill., digital ;24 cm. - Natural computing series,1619-7127. - Natural computing series..
Introduction -- Formal Models of Foraging -- Sensor Modalities -- Individual and Social Learning -- Introduction to Foraging Algorithms -- Mammals -- Bird Foraging Algorithms -- Fish Algorithms -- Ant Foraging Algorithms -- Honeybee Inspired Algorithms -- Bioluminescence Algorithms -- Spider Algorithms -- Worm Algorithm -- Bacteria Inspired Algorithms -- Slime Mould Foraging -- Plant Foraging Algorithms -- Group Search and Predatory Search -- Evolving Foraging Algorithms -- Conclusions.
This book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they then explain the techniques inspired by the behaviors of vertebrates, invertebrates, and non-neuronal organisms, and they then discuss algorithms based on formal models of foraging, how to evolve a foraging strategy, and likely future developments. No prior knowledge of natural computing is assumed. This book will be of particular interest to graduate students, academics and practitioners in computer science, informatics, data science, management science, and other application domains.
ISBN: 9783319591568$q(electronic bk.)
Standard No.: 10.1007/978-3-319-59156-8doiSubjects--Topical Terms:
183292
Mathematical optimization.
LC Class. No.: QA402.5
Dewey Class. No.: 519.6
Foraging-inspired optimisation algorithms
LDR
:02316nmm a2200349 a 4500
001
544488
003
DE-He213
005
20180927021939.0
006
m d
007
cr nn 008maaau
008
190508s2018 gw s 0 eng d
020
$a
9783319591568$q(electronic bk.)
020
$a
9783319591551$q(paper)
024
7
$a
10.1007/978-3-319-59156-8
$2
doi
035
$a
978-3-319-59156-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
UY
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
UY
$2
thema
072
7
$a
UYA
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.B795 2018
100
1
$a
Brabazon, Anthony.
$3
260085
245
1 0
$a
Foraging-inspired optimisation algorithms
$h
[electronic resource] /
$c
by Anthony Brabazon, Sean McGarraghy.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xviii, 478 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Natural computing series,
$x
1619-7127
505
0
$a
Introduction -- Formal Models of Foraging -- Sensor Modalities -- Individual and Social Learning -- Introduction to Foraging Algorithms -- Mammals -- Bird Foraging Algorithms -- Fish Algorithms -- Ant Foraging Algorithms -- Honeybee Inspired Algorithms -- Bioluminescence Algorithms -- Spider Algorithms -- Worm Algorithm -- Bacteria Inspired Algorithms -- Slime Mould Foraging -- Plant Foraging Algorithms -- Group Search and Predatory Search -- Evolving Foraging Algorithms -- Conclusions.
520
$a
This book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they then explain the techniques inspired by the behaviors of vertebrates, invertebrates, and non-neuronal organisms, and they then discuss algorithms based on formal models of foraging, how to evolve a foraging strategy, and likely future developments. No prior knowledge of natural computing is assumed. This book will be of particular interest to graduate students, academics and practitioners in computer science, informatics, data science, management science, and other application domains.
650
0
$a
Mathematical optimization.
$3
183292
650
0
$a
Biomimicry.
$3
514339
650
1 4
$a
Theory of Computation.
$3
274475
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Operations Research, Management Science.
$3
511451
650
2 4
$a
Operations Research/Decision Theory.
$3
273963
700
1
$a
McGarraghy, Sean.
$3
731246
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Natural computing series.
$3
677825
856
4 0
$u
https://doi.org/10.1007/978-3-319-59156-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000161932
電子館藏
1圖書
電子書
EB QA402.5 .B795 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-319-59156-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入