語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fog computing, deep learning and big...
~
Prabhu, C. S. R.
Fog computing, deep learning and big data analytics-research directions
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fog computing, deep learning and big data analytics-research directionsby C. S. R. Prabhu.
作者:
Prabhu, C. S. R.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
xiii, 71 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Cloud computing.
電子資源:
https://doi.org/10.1007/978-981-13-3209-8
ISBN:
9789811332098$q(electronic bk.)
Fog computing, deep learning and big data analytics-research directions
Prabhu, C. S. R.
Fog computing, deep learning and big data analytics-research directions
[electronic resource] /by C. S. R. Prabhu. - Singapore :Springer Singapore :2019. - xiii, 71 p. :ill., digital ;24 cm.
Introduction -- Fog Application management -- Fog Analytics -- Fog Security and Privary -- Research Directions -- Conclusion.
This book provides a comprehensive picture of fog computing technology, including of fog architectures, latency aware application management issues with real time requirements, security and privacy issues and fog analytics, in wide ranging application scenarios such as M2M device communication, smart homes, smart vehicles, augmented reality and transportation management. This book explores the research issues involved in the application of traditional shallow machine learning and deep learning techniques to big data analytics. It surveys global research advances in extending the conventional unsupervised or clustering algorithms, extending supervised and semi-supervised algorithms and association rule mining algorithms to big data Scenarios. Further it discusses the deep learning applications of big data analytics to fields of computer vision and speech processing, and describes applications such as semantic indexing and data tagging. Lastly it identifies 25 unsolved research problems and research directions in fog computing, as well as in the context of applying deep learning techniques to big data analytics, such as dimensionality reduction in high-dimensional data and improved formulation of data abstractions along with possible directions for their solutions.
ISBN: 9789811332098$q(electronic bk.)
Standard No.: 10.1007/978-981-13-3209-8doiSubjects--Topical Terms:
378527
Cloud computing.
LC Class. No.: QA76.585
Dewey Class. No.: 004.6782
Fog computing, deep learning and big data analytics-research directions
LDR
:02383nmm a2200325 a 4500
001
555185
003
DE-He213
005
20190104211344.0
006
m d
007
cr nn 008maaau
008
191121s2019 si s 0 eng d
020
$a
9789811332098$q(electronic bk.)
020
$a
9789811332081$q(paper)
024
7
$a
10.1007/978-981-13-3209-8
$2
doi
035
$a
978-981-13-3209-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.585
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
004.6782
$2
23
090
$a
QA76.585
$b
.P895 2019
100
1
$a
Prabhu, C. S. R.
$3
837234
245
1 0
$a
Fog computing, deep learning and big data analytics-research directions
$h
[electronic resource] /
$c
by C. S. R. Prabhu.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xiii, 71 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Fog Application management -- Fog Analytics -- Fog Security and Privary -- Research Directions -- Conclusion.
520
$a
This book provides a comprehensive picture of fog computing technology, including of fog architectures, latency aware application management issues with real time requirements, security and privacy issues and fog analytics, in wide ranging application scenarios such as M2M device communication, smart homes, smart vehicles, augmented reality and transportation management. This book explores the research issues involved in the application of traditional shallow machine learning and deep learning techniques to big data analytics. It surveys global research advances in extending the conventional unsupervised or clustering algorithms, extending supervised and semi-supervised algorithms and association rule mining algorithms to big data Scenarios. Further it discusses the deep learning applications of big data analytics to fields of computer vision and speech processing, and describes applications such as semantic indexing and data tagging. Lastly it identifies 25 unsolved research problems and research directions in fog computing, as well as in the context of applying deep learning techniques to big data analytics, such as dimensionality reduction in high-dimensional data and improved formulation of data abstractions along with possible directions for their solutions.
650
0
$a
Cloud computing.
$3
378527
650
0
$a
Big data.
$3
609582
650
1 4
$a
Big Data.
$3
760530
650
2 4
$a
Data Structures.
$3
273992
650
2 4
$a
Computer Appl. in Administrative Data Processing.
$3
275283
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-3209-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000167997
電子館藏
1圖書
電子書
EB QA76.585 P895 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-3209-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入