語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Remote sensing of vegetationalong a ...
~
Bodinger, Christian Julian.
Remote sensing of vegetationalong a latitudinal gradient in Chile /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Remote sensing of vegetationby Christian Julian Bodinger.
其他題名:
along a latitudinal gradient in Chile /
作者:
Bodinger, Christian Julian.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden :2019.
面頁冊數:
xxiii, 108 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Geoinformatics.
電子資源:
https://doi.org/10.1007/978-3-658-25120-8
ISBN:
9783658251208$q(electronic bk.)
Remote sensing of vegetationalong a latitudinal gradient in Chile /
Bodinger, Christian Julian.
Remote sensing of vegetation
along a latitudinal gradient in Chile /[electronic resource] :by Christian Julian Bodinger. - Wiesbaden :Springer Fachmedien Wiesbaden :2019. - xxiii, 108 p. :ill., digital ;24 cm. - BestMasters,2625-3577. - BestMasters..
TanDEM-X DEM, Sentinel Optical and Radar Data, Landsat Surface Reflectance -- Machine Learning Using SVMs and Random Forest -- Statistical Time-Series Evaluation -- Maps of Land Use and Cover (LULC) -- Time-Series Showing the Impact of ENSO.
How is the vegetation distribution influencing the erosion and surface formation in the different eco zones of Chile? To answer this question, it is mandatory to possess fundamental knowledge about plant species habitats, occurrence and their dynamics. In his study Christian Bodinger utilizes satellite imagery in combination with machine learning to derive maps of land use and land cover (LULC) in four study sites along a climatic gradient and to monitor vegetation using monthly Normalized Difference Vegetation Index (NDVI) time series. The findings contribute to a better understanding of climate impacts on Chilean vegetation and serve as a basis of landscape evolution models. Contents TanDEM-X DEM, Sentinel Optical and Radar Data, Landsat Surface Reflectance Machine Learning Using SVMs and Random Forest Statistical Time-Series Evaluation Maps of Land Use and Cover (LULC) Time-Series Showing the Impact of ENSO Target Groups Scientists, lecturers and students in the field of geology and ecology Geoscientists and Ecologists with a focus on remote sensing About the Author Christian Bodinger holds a M.Sc. in Physical Geography from the University of Tubingen, Germany. His focus in research lies on remote sensing and image analysis for environmental applications. He is currently working for a company focusing on aquatic remote sensing.
ISBN: 9783658251208$q(electronic bk.)
Standard No.: 10.1007/978-3-658-25120-8doiSubjects--Topical Terms:
769868
Geoinformatics.
LC Class. No.: QK46.5.R44 / B865 2019
Dewey Class. No.: 580.285
Remote sensing of vegetationalong a latitudinal gradient in Chile /
LDR
:02648nmm a2200337 a 4500
001
555344
003
DE-He213
005
20190625151433.0
006
m d
007
cr nn 008maaau
008
191121s2019 gw s 0 eng d
020
$a
9783658251208$q(electronic bk.)
020
$a
9783658251192$q(paper)
024
7
$a
10.1007/978-3-658-25120-8
$2
doi
035
$a
978-3-658-25120-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QK46.5.R44
$b
B865 2019
072
7
$a
RGW
$2
bicssc
072
7
$a
TEC036000
$2
bisacsh
072
7
$a
RGW
$2
thema
082
0 4
$a
580.285
$2
23
090
$a
QK46.5.R44
$b
B667 2019
100
1
$a
Bodinger, Christian Julian.
$3
837421
245
1 0
$a
Remote sensing of vegetation
$h
[electronic resource] :
$b
along a latitudinal gradient in Chile /
$c
by Christian Julian Bodinger.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Spektrum,
$c
2019.
300
$a
xxiii, 108 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
BestMasters,
$x
2625-3577
505
0
$a
TanDEM-X DEM, Sentinel Optical and Radar Data, Landsat Surface Reflectance -- Machine Learning Using SVMs and Random Forest -- Statistical Time-Series Evaluation -- Maps of Land Use and Cover (LULC) -- Time-Series Showing the Impact of ENSO.
520
$a
How is the vegetation distribution influencing the erosion and surface formation in the different eco zones of Chile? To answer this question, it is mandatory to possess fundamental knowledge about plant species habitats, occurrence and their dynamics. In his study Christian Bodinger utilizes satellite imagery in combination with machine learning to derive maps of land use and land cover (LULC) in four study sites along a climatic gradient and to monitor vegetation using monthly Normalized Difference Vegetation Index (NDVI) time series. The findings contribute to a better understanding of climate impacts on Chilean vegetation and serve as a basis of landscape evolution models. Contents TanDEM-X DEM, Sentinel Optical and Radar Data, Landsat Surface Reflectance Machine Learning Using SVMs and Random Forest Statistical Time-Series Evaluation Maps of Land Use and Cover (LULC) Time-Series Showing the Impact of ENSO Target Groups Scientists, lecturers and students in the field of geology and ecology Geoscientists and Ecologists with a focus on remote sensing About the Author Christian Bodinger holds a M.Sc. in Physical Geography from the University of Tubingen, Germany. His focus in research lies on remote sensing and image analysis for environmental applications. He is currently working for a company focusing on aquatic remote sensing.
650
0
$a
Geoinformatics.
$3
769868
650
0
$a
Plants
$x
Geographic information systems
$z
Chile.
$3
837422
650
1 4
$a
Remote Sensing/Photogrammetry.
$3
274522
650
2 4
$a
Physical Geography.
$3
212466
650
2 4
$a
Environmental Geography.
$3
711703
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
BestMasters.
$3
676593
856
4 0
$u
https://doi.org/10.1007/978-3-658-25120-8
950
$a
Earth and Environmental Science (Springer-11646)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000168156
電子館藏
1圖書
電子書
EB QK46.5.R44 B667 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-658-25120-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入