語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learning automata approach for socia...
~
Rezvanian, Alireza.
Learning automata approach for social networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learning automata approach for social networksby Alireza Rezvanian ... [et al.].
其他作者:
Rezvanian, Alireza.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xvii, 329 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Online social networksData processing.
電子資源:
https://doi.org/10.1007/978-3-030-10767-3
ISBN:
9783030107673$q(electronic bk.)
Learning automata approach for social networks
Learning automata approach for social networks
[electronic resource] /by Alireza Rezvanian ... [et al.]. - Cham :Springer International Publishing :2019. - xvii, 329 p. :ill. (some col.), digital ;24 cm. - Studies in computational intelligence,v.8201860-949X ;. - Studies in computational intelligence ;v. 216..
Introduction to Learning Automata Models -- Wavefront Cellular Learning Automata: A New Learning Paradigm -- Social Networks and Learning Systems: A Bibliometric Analysis -- Social Network Sampling -- Social Community Detection -- Social Link Prediction -- Social Trust Management -- Social Recommender Systems -- Social Influence Maximization.
This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis. As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.
ISBN: 9783030107673$q(electronic bk.)
Standard No.: 10.1007/978-3-030-10767-3doiSubjects--Topical Terms:
775311
Online social networks
--Data processing.
LC Class. No.: HM742
Dewey Class. No.: 302.30285
Learning automata approach for social networks
LDR
:02480nmm a2200337 a 4500
001
555660
003
DE-He213
005
20190705101900.0
006
m d
007
cr nn 008maaau
008
191121s2019 gw s 0 eng d
020
$a
9783030107673$q(electronic bk.)
020
$a
9783030107666$q(paper)
024
7
$a
10.1007/978-3-030-10767-3
$2
doi
035
$a
978-3-030-10767-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HM742
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
302.30285
$2
23
090
$a
HM742
$b
.L438 2019
245
0 0
$a
Learning automata approach for social networks
$h
[electronic resource] /
$c
by Alireza Rezvanian ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xvii, 329 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.820
505
0
$a
Introduction to Learning Automata Models -- Wavefront Cellular Learning Automata: A New Learning Paradigm -- Social Networks and Learning Systems: A Bibliometric Analysis -- Social Network Sampling -- Social Community Detection -- Social Link Prediction -- Social Trust Management -- Social Recommender Systems -- Social Influence Maximization.
520
$a
This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis. As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.
650
0
$a
Online social networks
$x
Data processing.
$3
775311
650
0
$a
System analysis
$x
Data processing.
$3
182728
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Social Media.
$3
742054
700
1
$a
Rezvanian, Alireza.
$3
805572
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
https://doi.org/10.1007/978-3-030-10767-3
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000168472
電子館藏
1圖書
電子書
EB HM742 L438 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-10767-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入