Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Convex and stochastic optimization
~
Bonnans, J. Frederic.
Convex and stochastic optimization
Record Type:
Electronic resources : Monograph/item
Title/Author:
Convex and stochastic optimizationby J. Frederic Bonnans.
Author:
Bonnans, J. Frederic.
Published:
Cham :Springer International Publishing :2019.
Description:
xiii, 311 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Mathematical optimization.
Online resource:
https://doi.org/10.1007/978-3-030-14977-2
ISBN:
nam a2200337 a 4500
Convex and stochastic optimization
Bonnans, J. Frederic.
Convex and stochastic optimization
[electronic resource] /by J. Frederic Bonnans. - Cham :Springer International Publishing :2019. - xiii, 311 p. :ill., digital ;24 cm. - Universitext,0172-5939. - Universitext..
1 A convex optimization toolbox -- 2 Semidefinite and semiinfinite programming -- 3 An integration toolbox -- 4 Risk measures -- 5 Sampling and optimizing -- 6 Dynamic stochastic optimization -- 7 Markov decision processes -- 8 Algorithms -- 9 Generalized convexity and transportation theory -- References -- Index.
This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules. This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.
ISBN: nam a2200337 a 4500
Standard No.: 10.1007/978-3-030-14977-2doiSubjects--Topical Terms:
183292
Mathematical optimization.
LC Class. No.: QA402.5 / .B66 2019
Dewey Class. No.: 519.6
Convex and stochastic optimization
LDR
:02075nmm a2200349 a 4500
001
556880
003
DE-He213
005
20190424022443.0
006
m d
007
cr nn 008maaau
008
191127s2019 gw s 0 eng d
020
3 9
$a
nam a2200337 a 4500
020
$a
9783030149772$q(electronic bk.)
020
$a
9783030149765$q(paper)
024
7
$a
10.1007/978-3-030-14977-2
$2
doi
035
$a
978-3-030-14977-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.B66 2019
072
7
$a
PBU
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBU
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.B716 2019
100
1
$a
Bonnans, J. Frederic.
$3
839233
245
1 0
$a
Convex and stochastic optimization
$h
[electronic resource] /
$c
by J. Frederic Bonnans.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xiii, 311 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
1 A convex optimization toolbox -- 2 Semidefinite and semiinfinite programming -- 3 An integration toolbox -- 4 Risk measures -- 5 Sampling and optimizing -- 6 Dynamic stochastic optimization -- 7 Markov decision processes -- 8 Algorithms -- 9 Generalized convexity and transportation theory -- References -- Index.
520
$a
This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules. This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.
650
0
$a
Mathematical optimization.
$3
183292
650
0
$a
Stochastic processes.
$3
181874
650
0
$a
Convex functions.
$3
191128
650
1 4
$a
Optimization.
$3
274084
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
274061
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Universitext.
$3
558272
856
4 0
$u
https://doi.org/10.1007/978-3-030-14977-2
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000169703
電子館藏
1圖書
電子書
EB QA402.5 .B716 2019 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-3-030-14977-2
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login