語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Riemann surfaces and algebraic curve...
~
Cavalieri, Renzo, (1976-)
Riemann surfaces and algebraic curvesa first course in Hurwitz theory /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Riemann surfaces and algebraic curvesRenzo Cavalieri, Eric Miles.
其他題名:
a first course in Hurwitz theory /
作者:
Cavalieri, Renzo,
其他作者:
Miles, Eric
出版者:
New York :Cambridge University Press,2016.
面頁冊數:
xii, 183 p. :ill., digital ;24 cm.
標題:
Riemann surfaces.
電子資源:
https://doi.org/10.1017/CBO9781316569252
ISBN:
9781316569252$q(electronic bk.)
Riemann surfaces and algebraic curvesa first course in Hurwitz theory /
Cavalieri, Renzo,1976-
Riemann surfaces and algebraic curves
a first course in Hurwitz theory /[electronic resource] :Renzo Cavalieri, Eric Miles. - New York :Cambridge University Press,2016. - xii, 183 p. :ill., digital ;24 cm. - London Mathematical Society student texts ;87. - London Mathematical Society student texts ;81..
Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.
ISBN: 9781316569252$q(electronic bk.)Subjects--Topical Terms:
247448
Riemann surfaces.
LC Class. No.: QA333 / .C38 2016
Dewey Class. No.: 515.93
Riemann surfaces and algebraic curvesa first course in Hurwitz theory /
LDR
:01775nmm a2200265 a 4500
001
557839
003
UkCbUP
005
20161031105116.0
006
m d
007
cr nn 008maaau
008
191205s2016 nyu o 1 0 eng d
020
$a
9781316569252$q(electronic bk.)
020
$a
9781107149243$q(hardback)
020
$a
9781316603529$q(paperback)
035
$a
CR9781316569252
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA333
$b
.C38 2016
082
0 4
$a
515.93
$2
23
090
$a
QA333
$b
.C376 2016
100
1
$a
Cavalieri, Renzo,
$d
1976-
$3
840456
245
1 0
$a
Riemann surfaces and algebraic curves
$h
[electronic resource] :
$b
a first course in Hurwitz theory /
$c
Renzo Cavalieri, Eric Miles.
260
$a
New York :
$b
Cambridge University Press,
$c
2016.
300
$a
xii, 183 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
London Mathematical Society student texts ;
$v
87
520
$a
Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.
650
0
$a
Riemann surfaces.
$3
247448
650
0
$a
Curves, Algebraic.
$3
190871
650
0
$a
Geometry, Algebraic.
$3
190843
700
1
$a
Miles, Eric
$q
(Eric W.)
$3
840457
830
0
$a
London Mathematical Society student texts ;
$v
81.
$3
810761
856
4 0
$u
https://doi.org/10.1017/CBO9781316569252
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000170285
電子館藏
1圖書
電子書
EB QA333 .C376 2016 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1017/CBO9781316569252
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入