語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Semantic kriging for spatio-temporal...
~
Bhattacharjee, Shrutilipi.
Semantic kriging for spatio-temporal prediction
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Semantic kriging for spatio-temporal predictionby Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen.
作者:
Bhattacharjee, Shrutilipi.
其他作者:
Ghosh, Soumya Kanti.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
xxv, 127 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
MeteorologyMathematical models.
電子資源:
https://doi.org/10.1007/978-981-13-8664-0
ISBN:
9789811386640$q(electronic bk.)
Semantic kriging for spatio-temporal prediction
Bhattacharjee, Shrutilipi.
Semantic kriging for spatio-temporal prediction
[electronic resource] /by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen. - Singapore :Springer Singapore :2019. - xxv, 127 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.8391860-949X ;. - Studies in computational intelligence ;v. 216..
Chapter 1. Introduction -- Chapter 2. Spatial Interpolation -- Chapter 3. Spatial Semantic Kriging -- Chapter 4. Fuzzy Bayesian Semantic Kriging -- Chapter 5. Spatio-temporal Reverse Semantic Kriging -- Chapter 6. Summary and Future Research.
This book identifies the need for modeling auxiliary knowledge of the terrain to enhance the prediction accuracy of meteorological parameters. The spatial and spatio-temporal prediction of these parameters are important for the scientific community, and the semantic kriging (SemK) and its variants facilitate different types of prediction and forecasting, such as spatial and spatio-temporal, a-priori and a-posterior, univariate and multivariate. As such, the book also covers the process of deriving the meteorological parameters from raw satellite remote sensing imagery, and helps understanding different prediction method categories and the relation between spatial interpolation methods and other prediction methods. The book is a valuable resource for researchers working in the area of prediction of meteorological parameters, semantic analysis (ontology-based reasoning) of the terrain, and improving predictions using auxiliary knowledge of the terrain.
ISBN: 9789811386640$q(electronic bk.)
Standard No.: 10.1007/978-981-13-8664-0doiSubjects--Topical Terms:
510632
Meteorology
--Mathematical models.
LC Class. No.: QC866 / .B43 2019
Dewey Class. No.: 551.5028
Semantic kriging for spatio-temporal prediction
LDR
:02299nmm a2200337 a 4500
001
562896
003
DE-He213
005
20190701131702.0
006
m d
007
cr nn 008maaau
008
200227s2019 si s 0 eng d
020
$a
9789811386640$q(electronic bk.)
020
$a
9789811386633$q(paper)
024
7
$a
10.1007/978-981-13-8664-0
$2
doi
035
$a
978-981-13-8664-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC866
$b
.B43 2019
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
551.5028
$2
23
090
$a
QC866
$b
.B575 2019
100
1
$a
Bhattacharjee, Shrutilipi.
$3
848226
245
1 0
$a
Semantic kriging for spatio-temporal prediction
$h
[electronic resource] /
$c
by Shrutilipi Bhattacharjee, Soumya Kanti Ghosh, Jia Chen.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xxv, 127 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.839
505
0
$a
Chapter 1. Introduction -- Chapter 2. Spatial Interpolation -- Chapter 3. Spatial Semantic Kriging -- Chapter 4. Fuzzy Bayesian Semantic Kriging -- Chapter 5. Spatio-temporal Reverse Semantic Kriging -- Chapter 6. Summary and Future Research.
520
$a
This book identifies the need for modeling auxiliary knowledge of the terrain to enhance the prediction accuracy of meteorological parameters. The spatial and spatio-temporal prediction of these parameters are important for the scientific community, and the semantic kriging (SemK) and its variants facilitate different types of prediction and forecasting, such as spatial and spatio-temporal, a-priori and a-posterior, univariate and multivariate. As such, the book also covers the process of deriving the meteorological parameters from raw satellite remote sensing imagery, and helps understanding different prediction method categories and the relation between spatial interpolation methods and other prediction methods. The book is a valuable resource for researchers working in the area of prediction of meteorological parameters, semantic analysis (ontology-based reasoning) of the terrain, and improving predictions using auxiliary knowledge of the terrain.
650
0
$a
Meteorology
$x
Mathematical models.
$3
510632
650
0
$a
Geospatial data
$x
Mathematical models.
$3
611472
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Remote Sensing/Photogrammetry.
$3
274522
650
2 4
$a
Artificial Intelligence.
$3
212515
700
1
$a
Ghosh, Soumya Kanti.
$3
848227
700
1
$a
Chen, Jia.
$3
530723
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
https://doi.org/10.1007/978-981-13-8664-0
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000174465
電子館藏
1圖書
電子書
EB QC866 .B575 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-8664-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入