語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big scientific data managementfirst ...
~
(1998 :)
Big scientific data managementfirst International Conference, BigSDM 2018, Beijing, China, November 30 - December 1, 2018 : revised selected papers /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Big scientific data managementedited by Jianhui Li ... [et al.].
其他題名:
first International Conference, BigSDM 2018, Beijing, China, November 30 - December 1, 2018 : revised selected papers /
其他題名:
BigSDM 2018
其他作者:
Li, Jianhui.
團體作者:
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xiii, 332 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Big dataCongresses.
電子資源:
https://doi.org/10.1007/978-3-030-28061-1
ISBN:
9783030280611$q(electronic bk.)
Big scientific data managementfirst International Conference, BigSDM 2018, Beijing, China, November 30 - December 1, 2018 : revised selected papers /
Big scientific data management
first International Conference, BigSDM 2018, Beijing, China, November 30 - December 1, 2018 : revised selected papers /[electronic resource] :BigSDM 2018edited by Jianhui Li ... [et al.]. - Cham :Springer International Publishing :2019. - xiii, 332 p. :ill., digital ;24 cm. - Lecture notes in computer science,114730302-9743 ;. - Lecture notes in computer science ;4891..
Application cases in the big scientific data management -- Paradigms for enhancing scientific discovery through big data -- Data management challenges posed by big scientific data -- Machine learning methods to facilitate scientific discovery -- Science platforms and storage systems for large scale scientific applications -- Data cleansing and quality assurance of science data -- Data policies.
This book constitutes the refereed proceedings of the First International Conference on Big Scientific Data Management, BigSDM 2018, held in Beijing, Greece, in November/December 2018. The 24 full papers presented together with 7 short papers were carefully reviewed and selected from 86 submissions. The topics involved application cases in the big scientific data management, paradigms for enhancing scientific discovery through big data, data management challenges posed by big scientific data, machine learning methods to facilitate scientific discovery, science platforms and storage systems for large scale scientific applications, data cleansing and quality assurance of science data, and data policies.
ISBN: 9783030280611$q(electronic bk.)
Standard No.: 10.1007/978-3-030-28061-1doiSubjects--Topical Terms:
592065
Big data
--Congresses.
LC Class. No.: QA76.9.B45 / B55 2018
Dewey Class. No.: 005.7
Big scientific data managementfirst International Conference, BigSDM 2018, Beijing, China, November 30 - December 1, 2018 : revised selected papers /
LDR
:02400nmm a2200373 a 4500
001
564953
003
DE-He213
005
20190807152118.0
006
m d
007
cr nn 008maaau
008
200327s2019 gw s 0 eng d
020
$a
9783030280611$q(electronic bk.)
020
$a
9783030280604$q(paper)
023
6 4
$a
nam a2200361 a 4500
024
7
$a
10.1007/978-3-030-28061-1
$2
doi
035
$a
978-3-030-28061-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.B45
$b
B55 2018
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.B45
$b
B594 2018
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Big scientific data management
$h
[electronic resource] :
$b
first International Conference, BigSDM 2018, Beijing, China, November 30 - December 1, 2018 : revised selected papers /
$c
edited by Jianhui Li ... [et al.].
246
3
$a
BigSDM 2018
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xiii, 332 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
11473
490
1
$a
Information systems and applications, incl. internet/web, and HCI
505
0
$a
Application cases in the big scientific data management -- Paradigms for enhancing scientific discovery through big data -- Data management challenges posed by big scientific data -- Machine learning methods to facilitate scientific discovery -- Science platforms and storage systems for large scale scientific applications -- Data cleansing and quality assurance of science data -- Data policies.
520
$a
This book constitutes the refereed proceedings of the First International Conference on Big Scientific Data Management, BigSDM 2018, held in Beijing, Greece, in November/December 2018. The 24 full papers presented together with 7 short papers were carefully reviewed and selected from 86 submissions. The topics involved application cases in the big scientific data management, paradigms for enhancing scientific discovery through big data, data management challenges posed by big scientific data, machine learning methods to facilitate scientific discovery, science platforms and storage systems for large scale scientific applications, data cleansing and quality assurance of science data, and data policies.
650
0
$a
Big data
$v
Congresses.
$3
592065
650
0
$a
Database management
$3
253546
650
1 4
$a
Big Data.
$3
760530
650
2 4
$a
Information Systems and Communication Service.
$3
274025
650
2 4
$a
Computer Systems Organization and Communication Networks.
$3
273709
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Management of Computing and Information Systems.
$3
274191
650
2 4
$a
Systems and Data Security.
$3
274481
700
1
$a
Li, Jianhui.
$3
850660
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
830
0
$a
Information systems and applications, incl. internet/web, and HCI.
$3
822022
856
4 0
$u
https://doi.org/10.1007/978-3-030-28061-1
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000175502
電子館藏
1圖書
電子書
EB QA76.9.B45 B594 2018 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-28061-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入