語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bayesian optimization and data science
~
Archetti, Francesco.
Bayesian optimization and data science
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Bayesian optimization and data scienceby Francesco Archetti, Antonio Candelieri.
作者:
Archetti, Francesco.
其他作者:
Candelieri, Antonio.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xiii, 126 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Bayesian statistical decision theory.
電子資源:
https://doi.org/10.1007/978-3-030-24494-1
ISBN:
9783030244941$q(electronic bk.)
Bayesian optimization and data science
Archetti, Francesco.
Bayesian optimization and data science
[electronic resource] /by Francesco Archetti, Antonio Candelieri. - Cham :Springer International Publishing :2019. - xiii, 126 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in optimization,2190-8354. - SpringerBriefs in optimization..
1. Automated Machine Learning and Bayesian Optimization -- 2. From Global Optimization to Optimal Learning -- 3. The Surrogate Model -- 4. The Acquisition Function -- 5. Exotic BO -- 6. Software Resources -- 7. Selected Applications.
This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BO's use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.
ISBN: 9783030244941$q(electronic bk.)
Standard No.: 10.1007/978-3-030-24494-1doiSubjects--Topical Terms:
182005
Bayesian statistical decision theory.
LC Class. No.: QA279.5 / .A734 2019
Dewey Class. No.: 519.542
Bayesian optimization and data science
LDR
:02192nmm a2200349 a 4500
001
566494
003
DE-He213
005
20191223163759.0
006
m d
007
cr nn 008maaau
008
200429s2019 gw s 0 eng d
020
$a
9783030244941$q(electronic bk.)
020
$a
9783030244934$q(paper)
024
7
$a
10.1007/978-3-030-24494-1
$2
doi
035
$a
978-3-030-24494-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA279.5
$b
.A734 2019
072
7
$a
KJT
$2
bicssc
072
7
$a
BUS049000
$2
bisacsh
072
7
$a
KJT
$2
thema
072
7
$a
KJM
$2
thema
082
0 4
$a
519.542
$2
23
090
$a
QA279.5
$b
.A672 2019
100
1
$a
Archetti, Francesco.
$3
852212
245
1 0
$a
Bayesian optimization and data science
$h
[electronic resource] /
$c
by Francesco Archetti, Antonio Candelieri.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xiii, 126 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in optimization,
$x
2190-8354
505
0
$a
1. Automated Machine Learning and Bayesian Optimization -- 2. From Global Optimization to Optimal Learning -- 3. The Surrogate Model -- 4. The Acquisition Function -- 5. Exotic BO -- 6. Software Resources -- 7. Selected Applications.
520
$a
This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BO's use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.
650
0
$a
Bayesian statistical decision theory.
$3
182005
650
0
$a
Data mining.
$3
184440
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Operations Research, Management Science.
$3
511451
650
2 4
$a
Machine Learning.
$3
833608
650
2 4
$a
Mathematical Software.
$3
279828
650
2 4
$a
Bayesian Inference.
$3
825978
700
1
$a
Candelieri, Antonio.
$3
852213
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in optimization.
$3
558249
856
4 0
$u
https://doi.org/10.1007/978-3-030-24494-1
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000176292
電子館藏
1圖書
電子書
EB QA279.5 .A672 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-24494-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入