語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning in medical imaging1...
~
(1998 :)
Machine learning in medical imaging10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning in medical imagingedited by Heung-Il Suk ... [et al.].
其他題名:
10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
其他題名:
MLMI 2019
其他作者:
Suk, Heung-Il.
團體作者:
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xviii, 695 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learningCongresses.
電子資源:
https://doi.org/10.1007/978-3-030-32692-0
ISBN:
9783030326920$q(electronic bk.)
Machine learning in medical imaging10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
Machine learning in medical imaging
10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /[electronic resource] :MLMI 2019edited by Heung-Il Suk ... [et al.]. - Cham :Springer International Publishing :2019. - xviii, 695 p. :ill. (some col.), digital ;24 cm. - Lecture notes in computer science,118610302-9743 ;. - Lecture notes in computer science ;4891..
This book constitutes the proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions. They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.
ISBN: 9783030326920$q(electronic bk.)
Standard No.: 10.1007/978-3-030-32692-0doiSubjects--Topical Terms:
384498
Machine learning
--Congresses.
LC Class. No.: RC78.7.D53 / M55 2019
Dewey Class. No.: 006.6
Machine learning in medical imaging10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
LDR
:02177nmm a2200373 a 4500
001
567941
003
DE-He213
005
20191026082319.0
006
m d
007
cr nn 008maaau
008
200611s2019 sz s 0 eng d
020
$a
9783030326920$q(electronic bk.)
020
$a
9783030326913$q(paper)
024
7
$a
10.1007/978-3-030-32692-0
$2
doi
035
$a
978-3-030-32692-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC78.7.D53
$b
M55 2019
072
7
$a
UYT
$2
bicssc
072
7
$a
COM012000
$2
bisacsh
072
7
$a
UYT
$2
thema
072
7
$a
UYQV
$2
thema
082
0 4
$a
006.6
$2
23
090
$a
RC78.7.D53
$b
M685 2019
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Machine learning in medical imaging
$h
[electronic resource] :
$b
10th International Workshop, MLMI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019 : proceedings /
$c
edited by Heung-Il Suk ... [et al.].
246
3
$a
MLMI 2019
246
3
$a
MICCAI 2019
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xviii, 695 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
11861
490
1
$a
Image processing, computer vision, pattern recognition, and graphics
520
$a
This book constitutes the proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions. They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
0
$a
Diagnostic imaging
$x
Data processing
$v
Congresses.
$3
445765
650
0
$a
Artificial intelligence
$x
Medical applications
$v
Congresses.
$3
442992
650
1 4
$a
Image Processing and Computer Vision.
$3
274051
650
2 4
$a
Artificial Intelligence.
$3
212515
700
1
$a
Suk, Heung-Il.
$3
823090
710
2
$a
SpringerLink (Online service)
$3
273601
711
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
830
0
$a
Image processing, computer vision, pattern recognition, and graphics.
$3
823073
856
4 0
$u
https://doi.org/10.1007/978-3-030-32692-0
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000176586
電子館藏
1圖書
電子書
EB RC78.7.D53 M685 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-32692-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入