語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Pattern analysis of the human connectome
~
Hu, Dewen.
Pattern analysis of the human connectome
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Pattern analysis of the human connectomeby Dewen Hu, Ling-Li Zeng.
作者:
Hu, Dewen.
其他作者:
Zeng, Ling-Li.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
viii, 258 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Brain mapping.
電子資源:
https://doi.org/10.1007/978-981-32-9523-0
ISBN:
9789813295230$q(electronic bk.)
Pattern analysis of the human connectome
Hu, Dewen.
Pattern analysis of the human connectome
[electronic resource] /by Dewen Hu, Ling-Li Zeng. - Singapore :Springer Singapore :2019. - viii, 258 p. :ill., digital ;24 cm.
Introduction -- Multivariate pattern analysis of whole-brain functional connectivity in major depression -- Discriminative analysis of nonlinear functional connectivity in schizophrenia -- Predicting individual brain maturity using window-based dynamic functional connectivity -- Locally linear embedding of functional connectivity for classification -- Locally linear embedding of anatomical connectivity for classification -- Locality preserving projection of functional connectivity for regression -- Intrinsic discriminant analysis of functional connectivity for multi-class classification -- Sparse representation of dynamic functional connectivity in depression -- Low-rank learning of functional connectivity reveals neural traits of individual differences -- Multi-task learning of structural MRI for multi-site classification -- Deep discriminant auto-encoder network for multi-site fMRI classification.
This book presents recent advances in pattern analysis of the human connectome. The human connectome, measured by magnetic resonance imaging at the macroscale, provides a comprehensive description of how brain regions are connected. Based on machine learning methods, multiviarate pattern analysis can directly decode psychological or cognitive states from brain connectivity patterns. Although there are a number of works with chapters on conventional human connectome encoding (brain-mapping), there are few resources on human connectome decoding (brain-reading) Focusing mainly on advances made over the past decade in the field of manifold learning, sparse coding, multi-task learning, and deep learning of the human connectome and applications, this book helps students and researchers gain an overall picture of pattern analysis of the human connectome. It also offers valuable insights for clinicians involved in the clinical diagnosis and treatment evaluation of neuropsychiatric disorders.
ISBN: 9789813295230$q(electronic bk.)
Standard No.: 10.1007/978-981-32-9523-0doiSubjects--Topical Terms:
456266
Brain mapping.
LC Class. No.: RC386.6.B7 / H834 2019
Dewey Class. No.: 612.825
Pattern analysis of the human connectome
LDR
:02891nmm a2200325 a 4500
001
569257
003
DE-He213
005
20200204152938.0
006
m d
007
cr nn 008maaau
008
200723s2019 si s 0 eng d
020
$a
9789813295230$q(electronic bk.)
020
$a
9789813295223$q(paper)
024
7
$a
10.1007/978-981-32-9523-0
$2
doi
035
$a
978-981-32-9523-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC386.6.B7
$b
H834 2019
072
7
$a
PSAN
$2
bicssc
072
7
$a
MED057000
$2
bisacsh
072
7
$a
PSAN
$2
thema
082
0 4
$a
612.825
$2
23
090
$a
RC386.6.B7
$b
H874 2019
100
1
$a
Hu, Dewen.
$3
675323
245
1 0
$a
Pattern analysis of the human connectome
$h
[electronic resource] /
$c
by Dewen Hu, Ling-Li Zeng.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
viii, 258 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Multivariate pattern analysis of whole-brain functional connectivity in major depression -- Discriminative analysis of nonlinear functional connectivity in schizophrenia -- Predicting individual brain maturity using window-based dynamic functional connectivity -- Locally linear embedding of functional connectivity for classification -- Locally linear embedding of anatomical connectivity for classification -- Locality preserving projection of functional connectivity for regression -- Intrinsic discriminant analysis of functional connectivity for multi-class classification -- Sparse representation of dynamic functional connectivity in depression -- Low-rank learning of functional connectivity reveals neural traits of individual differences -- Multi-task learning of structural MRI for multi-site classification -- Deep discriminant auto-encoder network for multi-site fMRI classification.
520
$a
This book presents recent advances in pattern analysis of the human connectome. The human connectome, measured by magnetic resonance imaging at the macroscale, provides a comprehensive description of how brain regions are connected. Based on machine learning methods, multiviarate pattern analysis can directly decode psychological or cognitive states from brain connectivity patterns. Although there are a number of works with chapters on conventional human connectome encoding (brain-mapping), there are few resources on human connectome decoding (brain-reading) Focusing mainly on advances made over the past decade in the field of manifold learning, sparse coding, multi-task learning, and deep learning of the human connectome and applications, this book helps students and researchers gain an overall picture of pattern analysis of the human connectome. It also offers valuable insights for clinicians involved in the clinical diagnosis and treatment evaluation of neuropsychiatric disorders.
650
0
$a
Brain mapping.
$3
456266
650
0
$a
Brain
$x
Imaging.
$3
243684
650
1 4
$a
Neurosciences.
$3
211508
650
2 4
$a
Mathematical and Computational Biology.
$3
514442
650
2 4
$a
Biomedical Engineering/Biotechnology.
$3
730838
700
1
$a
Zeng, Ling-Li.
$3
855177
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-32-9523-0
950
$a
Biomedical and Life Sciences (Springer-11642)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000177319
電子館藏
1圖書
電子書
EB RC386.6.B7 H874 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-32-9523-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入