語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Algorithms for optimization /
~
Kochenderfer, Mykel J., (1980-)
Algorithms for optimization /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Algorithms for optimization /Mykel J. Kochenderfer, Tim A. Wheeler.
作者:
Kochenderfer, Mykel J.,
其他作者:
Wheeler, Tim A.
面頁冊數:
xx, 500 pages :illustrations (some color) ;24 cm
標題:
Mathematical optimization.
ISBN:
0262039427
Algorithms for optimization /
Kochenderfer, Mykel J.,1980-
Algorithms for optimization /
Mykel J. Kochenderfer, Tim A. Wheeler. - xx, 500 pages :illustrations (some color) ;24 cm
Includes bibliographical references (pages 483-493) and index.
Preface -- Acknowledgments - Introduction -- 2 Derivatives and Gradients -- Bracketing -- Local Descent -- First-Order Methods -- Second-Order Methods -- Direct Methods -- Stochastic Methods -- Population Methods - Constraints -- Linear Constrained Optimization -- Multiobjective Optimization -- Sampling Plans -- Surrogate Models -- Probabilistic Surrogate Models -- Surrogate Optimization -- Optimization under Uncertainty -- Uncertainty Propagation -- Discrete Optimization -- Expression Optimization -- Multidisciplinary Optimization - Julia -- Test Functions -- Mathematical Concepts -- Solutions -- Bibliography -- Index
A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals. -- Provided by publisher.
ISBN: 0262039427
Standard No.: 40028910435
LCCN: 2018023091
Nat. Bib. No.: GBB9J3056bnb
Nat. Bib. Agency Control No.: 019370267UkSubjects--Topical Terms:
183292
Mathematical optimization.
Index Terms--Genre/Form:
746486
Problems and exercises.
LC Class. No.: QA9.58 / .K65425 2019
Dewey Class. No.: 518/.1
Algorithms for optimization /
LDR
:04125nam a2200493 a 4500
001
571205
003
OCoLC
005
20200910043258.0
008
200910t20192019maua b 001 0 eng
010
$a
2018023091
015
$a
GBB9J3056
$2
bnb
016
7
$a
019370267
$2
Uk
020
$a
0262039427
$q
(hardcover : alk. paper)
020
$a
9780262039420
$q
(hardcover : alk. paper) :
$c
NT$1343
024
8
$a
40028910435
029
1
$a
CHVBK
$b
558708420
029
1
$a
CHBIS
$b
011246291
029
1
$a
AU@
$b
000063577935
029
1
$a
CHVBK
$b
563682590
029
1
$a
CHSLU
$b
001347105
029
1
$a
CHVBK
$b
556229509
029
1
$a
CHDSB
$b
007069444
029
1
$a
UKMGB
$b
019370267
035
$a
(OCoLC)1043063688
035
$a
on1043063688
040
$a
DLC
$b
eng
$e
rda
$c
DLC
$d
OCLCF
$d
BDX
$d
YDX
$d
CUI
$d
MYG
$d
IXA
$d
DLC
$d
OCLCO
$d
YUS
$d
HF9
$d
CHVBK
$d
OCLCO
$d
UKMGB
$d
TEU
$d
WVU
$d
ORE
$d
OCLCO
$d
OCL
041
1 5
$a
cam 2200493 i 4500
042
$a
pcc
049
$a
NUKM
050
0 0
$a
QA9.58
$b
.K65425 2019
082
0 0
$a
518/.1
$2
23
100
1
$a
Kochenderfer, Mykel J.,
$d
1980-
$e
author.
$3
858176
245
1 0
$a
Algorithms for optimization /
$c
Mykel J. Kochenderfer, Tim A. Wheeler.
264
1
$a
Cambridge, Massachusetts :
$b
The MIT Press,
$c
[2019]
264
4
$c
©2019
300
$a
xx, 500 pages :
$b
illustrations (some color) ;
$c
24 cm
336
$a
text
$b
txt
$2
rdacontent
337
$a
unmediated
$b
n
$2
rdamedia
338
$a
volume
$b
nc
$2
rdacarrier
504
$a
Includes bibliographical references (pages 483-493) and index.
505
0
$a
Preface -- Acknowledgments - Introduction -- 2 Derivatives and Gradients -- Bracketing -- Local Descent -- First-Order Methods -- Second-Order Methods -- Direct Methods -- Stochastic Methods -- Population Methods - Constraints -- Linear Constrained Optimization -- Multiobjective Optimization -- Sampling Plans -- Surrogate Models -- Probabilistic Surrogate Models -- Surrogate Optimization -- Optimization under Uncertainty -- Uncertainty Propagation -- Discrete Optimization -- Expression Optimization -- Multidisciplinary Optimization - Julia -- Test Functions -- Mathematical Concepts -- Solutions -- Bibliography -- Index
520
$a
A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals. -- Provided by publisher.
650
0
$a
Mathematical optimization.
$3
183292
650
0
$a
Algorithms.
$3
184661
650
0
$a
Algorithms
$3
253943
650
7
$a
Algorithmus
$3
784502
655
7
$a
Problems and exercises.
$2
fast
$3
746486
700
1
$a
Wheeler, Tim A.
$q
(Tim Allan),
$e
author.
$3
858177
938
$a
Brodart
$b
BROD
$n
123262461
938
$a
YBP Library Services
$b
YANK
$n
15723386
938
$a
YBP Library Services
$b
YANK
$n
ci51113164
994
$a
C0
$b
TWNUK
筆 0 讀者評論
全部
西方語文圖書區(四樓)
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
320000724684
西方語文圖書區(四樓)
1圖書
一般圖書
QA9.58 K76 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入