語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An invitation to statistics in Wasse...
~
Panaretos, Victor M.
An invitation to statistics in Wasserstein space
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
An invitation to statistics in Wasserstein spaceby Victor M. Panaretos, Yoav Zemel.
作者:
Panaretos, Victor M.
其他作者:
Zemel, Yoav.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xiii, 147 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Mathematical statistics.
電子資源:
https://doi.org/10.1007/978-3-030-38438-8
ISBN:
9783030384388$q(electronic bk.)
An invitation to statistics in Wasserstein space
Panaretos, Victor M.
An invitation to statistics in Wasserstein space
[electronic resource] /by Victor M. Panaretos, Yoav Zemel. - Cham :Springer International Publishing :2020. - xiii, 147 p. :ill., digital ;24 cm. - SpringerBriefs in probability and mathematical statistics,2365-4333. - SpringerBriefs in probability and mathematical statistics..
Optimal transportation -- The Wasserstein space -- Frechet means in the Wasserstein space -- Phase variation and Frechet means -- Construction of Frechet means and multicouplings.
Open access.
This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds) The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes) Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph.
ISBN: 9783030384388$q(electronic bk.)
Standard No.: 10.1007/978-3-030-38438-8doiSubjects--Topical Terms:
181877
Mathematical statistics.
LC Class. No.: QA276 / .P363 2020
Dewey Class. No.: 519.5
An invitation to statistics in Wasserstein space
LDR
:02576nmm a2200361 a 4500
001
572797
003
DE-He213
005
20200806115221.0
006
m d
007
cr nn 008maaau
008
200925s2020 sz s 0 eng d
020
$a
9783030384388$q(electronic bk.)
020
$a
9783030384371$q(paper)
024
7
$a
10.1007/978-3-030-38438-8
$2
doi
035
$a
978-3-030-38438-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276
$b
.P363 2020
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.5
$2
23
090
$a
QA276
$b
.P187 2020
100
1
$a
Panaretos, Victor M.
$3
750287
245
1 3
$a
An invitation to statistics in Wasserstein space
$h
[electronic resource] /
$c
by Victor M. Panaretos, Yoav Zemel.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xiii, 147 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in probability and mathematical statistics,
$x
2365-4333
505
0
$a
Optimal transportation -- The Wasserstein space -- Frechet means in the Wasserstein space -- Phase variation and Frechet means -- Construction of Frechet means and multicouplings.
506
$a
Open access.
520
$a
This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds) The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes) Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph.
650
0
$a
Mathematical statistics.
$3
181877
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
274061
700
1
$a
Zemel, Yoav.
$3
860011
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in probability and mathematical statistics.
$3
732767
856
4 0
$u
https://doi.org/10.1007/978-3-030-38438-8
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000179408
電子館藏
1圖書
電子書
EB QA276 .P187 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-38438-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入