語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Ergodic theoretic methods in group h...
~
Loh, Clara.
Ergodic theoretic methods in group homologya minicourse on L2-Betti numbers in group theory /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Ergodic theoretic methods in group homologyby Clara Loh.
其他題名:
a minicourse on L2-Betti numbers in group theory /
作者:
Loh, Clara.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
ix, 114 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Group theory.
電子資源:
https://doi.org/10.1007/978-3-030-44220-0
ISBN:
9783030442200$q(electronic bk.)
Ergodic theoretic methods in group homologya minicourse on L2-Betti numbers in group theory /
Loh, Clara.
Ergodic theoretic methods in group homology
a minicourse on L2-Betti numbers in group theory /[electronic resource] :by Clara Loh. - Cham :Springer International Publishing :2020. - ix, 114 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
0 Introduction -- 1 The von Neumann dimension -- 2 L2-Betti numbers -- 3 The residually finite view: Approximation -- 4 The dynamical view: Measured group theory -- 5 Invariant random subgroups -- 6 Simplicial volume -- A Quick reference -- Bibliography -- Symbols -- Index.
This book offers a concise introduction to ergodic methods in group homology, with a particular focus on the computation of L2-Betti numbers. Group homology integrates group actions into homological structure. Coefficients based on probability measure preserving actions combine ergodic theory and homology. An example of such an interaction is provided by L2-Betti numbers: these invariants can be understood in terms of group homology with coefficients related to the group von Neumann algebra, via approximation by finite index subgroups, or via dynamical systems. In this way, L2-Betti numbers lead to orbit/measure equivalence invariants and measured group theory helps to compute L2-Betti numbers. Similar methods apply also to compute the rank gradient/cost of groups as well as the simplicial volume of manifolds. This book introduces L2-Betti numbers of groups at an elementary level and then develops the ergodic point of view, emphasising the connection with approximation phenomena for homological gradient invariants of groups and spaces. The text is an extended version of the lecture notes for a minicourse at the MSRI summer graduate school "Random and arithmetic structures in topology" and thus accessible to the graduate or advanced undergraduate students. Many examples and exercises illustrate the material.
ISBN: 9783030442200$q(electronic bk.)
Standard No.: 10.1007/978-3-030-44220-0doiSubjects--Topical Terms:
189579
Group theory.
LC Class. No.: QA174.2 / .L865 2020
Dewey Class. No.: 512.2
Ergodic theoretic methods in group homologya minicourse on L2-Betti numbers in group theory /
LDR
:02666nmm a2200337 a 4500
001
572803
003
DE-He213
005
20200806114432.0
006
m d
007
cr nn 008maaau
008
200925s2020 sz s 0 eng d
020
$a
9783030442200$q(electronic bk.)
020
$a
9783030442194$q(paper)
024
7
$a
10.1007/978-3-030-44220-0
$2
doi
035
$a
978-3-030-44220-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA174.2
$b
.L865 2020
072
7
$a
PBG
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
072
7
$a
PBG
$2
thema
082
0 4
$a
512.2
$2
23
090
$a
QA174.2
$b
.L833 2020
100
1
$a
Loh, Clara.
$3
798198
245
1 0
$a
Ergodic theoretic methods in group homology
$h
[electronic resource] :
$b
a minicourse on L2-Betti numbers in group theory /
$c
by Clara Loh.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
ix, 114 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
0 Introduction -- 1 The von Neumann dimension -- 2 L2-Betti numbers -- 3 The residually finite view: Approximation -- 4 The dynamical view: Measured group theory -- 5 Invariant random subgroups -- 6 Simplicial volume -- A Quick reference -- Bibliography -- Symbols -- Index.
520
$a
This book offers a concise introduction to ergodic methods in group homology, with a particular focus on the computation of L2-Betti numbers. Group homology integrates group actions into homological structure. Coefficients based on probability measure preserving actions combine ergodic theory and homology. An example of such an interaction is provided by L2-Betti numbers: these invariants can be understood in terms of group homology with coefficients related to the group von Neumann algebra, via approximation by finite index subgroups, or via dynamical systems. In this way, L2-Betti numbers lead to orbit/measure equivalence invariants and measured group theory helps to compute L2-Betti numbers. Similar methods apply also to compute the rank gradient/cost of groups as well as the simplicial volume of manifolds. This book introduces L2-Betti numbers of groups at an elementary level and then develops the ergodic point of view, emphasising the connection with approximation phenomena for homological gradient invariants of groups and spaces. The text is an extended version of the lecture notes for a minicourse at the MSRI summer graduate school "Random and arithmetic structures in topology" and thus accessible to the graduate or advanced undergraduate students. Many examples and exercises illustrate the material.
650
0
$a
Group theory.
$3
189579
650
0
$a
Homology theory.
$3
205880
650
1 4
$a
Group Theory and Generalizations.
$3
274819
650
2 4
$a
Algebraic Topology.
$3
273784
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
650
2 4
$a
Vibration, Dynamical Systems, Control.
$3
274667
650
2 4
$a
Topological Groups, Lie Groups.
$3
273787
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
558795
856
4 0
$u
https://doi.org/10.1007/978-3-030-44220-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000179414
電子館藏
1圖書
電子書
EB QA174.2 .L833 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-44220-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入