語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Modeling information diffusion in on...
~
SpringerLink (Online service)
Modeling information diffusion in online social networks with partial differential equations
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Modeling information diffusion in online social networks with partial differential equationsby Haiyan Wang, Feng Wang, Kuai Xu.
作者:
Wang, Haiyan.
其他作者:
Wang, Feng.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xiii, 144 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Differential equations, Partial.
電子資源:
https://doi.org/10.1007/978-3-030-38852-2
ISBN:
9783030388522$q(electronic bk.)
Modeling information diffusion in online social networks with partial differential equations
Wang, Haiyan.
Modeling information diffusion in online social networks with partial differential equations
[electronic resource] /by Haiyan Wang, Feng Wang, Kuai Xu. - Cham :Springer International Publishing :2020. - xiii, 144 p. :ill., digital ;24 cm. - Surveys and tutorials in the applied mathematical sciences,v.72199-4765 ;. - Surveys and tutorials in the applied mathematical sciences ;v.7..
Ordinary Differential Equation Models on Social Networks -- Spatio-temporal Patterns of Information Diffusion -- Clustering of Online Social Network Graphs -- Partial Differential Equation Models -- Modeling Complex Interactions -- Mathematical Analysis -- Applications.
The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.
ISBN: 9783030388522$q(electronic bk.)
Standard No.: 10.1007/978-3-030-38852-2doiSubjects--Topical Terms:
189753
Differential equations, Partial.
LC Class. No.: QA374 / .W364 2020
Dewey Class. No.: 515.353
Modeling information diffusion in online social networks with partial differential equations
LDR
:02615nmm a2200337 a 4500
001
572806
003
DE-He213
005
20200806102941.0
006
m d
007
cr nn 008maaau
008
200925s2020 sz s 0 eng d
020
$a
9783030388522$q(electronic bk.)
020
$a
9783030388508$q(paper)
024
7
$a
10.1007/978-3-030-38852-2
$2
doi
035
$a
978-3-030-38852-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA374
$b
.W364 2020
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.353
$2
23
090
$a
QA374
$b
.W246 2020
100
1
$a
Wang, Haiyan.
$3
860018
245
1 0
$a
Modeling information diffusion in online social networks with partial differential equations
$h
[electronic resource] /
$c
by Haiyan Wang, Feng Wang, Kuai Xu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xiii, 144 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Surveys and tutorials in the applied mathematical sciences,
$x
2199-4765 ;
$v
v.7
505
0
$a
Ordinary Differential Equation Models on Social Networks -- Spatio-temporal Patterns of Information Diffusion -- Clustering of Online Social Network Graphs -- Partial Differential Equation Models -- Modeling Complex Interactions -- Mathematical Analysis -- Applications.
520
$a
The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.
650
0
$a
Differential equations, Partial.
$3
189753
650
0
$a
Diffusion
$x
Mathematical models.
$3
202561
650
0
$a
Online social networks.
$3
281852
650
1 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Computer Appl. in Social and Behavioral Sciences.
$3
274376
650
2 4
$a
Communication Studies.
$3
522484
700
1
$a
Wang, Feng.
$3
836937
700
1
$a
Xu, Kuai.
$3
727805
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Surveys and tutorials in the applied mathematical sciences ;
$v
v.7.
$3
860019
856
4 0
$u
https://doi.org/10.1007/978-3-030-38852-2
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000179417
電子館藏
1圖書
電子書
EB QA374 .W246 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-38852-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入