語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep in-memory architectures for mac...
~
Gonugondla, Sujan.
Deep in-memory architectures for machine learning
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep in-memory architectures for machine learningby Mingu Kang, Sujan Gonugondla, Naresh R. Shanbhag.
作者:
Kang, Mingu.
其他作者:
Gonugondla, Sujan.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
x, 174 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Computer storage devices.
電子資源:
https://doi.org/10.1007/978-3-030-35971-3
ISBN:
9783030359713$q(electronic bk.)
Deep in-memory architectures for machine learning
Kang, Mingu.
Deep in-memory architectures for machine learning
[electronic resource] /by Mingu Kang, Sujan Gonugondla, Naresh R. Shanbhag. - Cham :Springer International Publishing :2020. - x, 174 p. :ill., digital ;24 cm.
Introduction -- The Deep In-memory Architecture (DIMA) -- DIMA Prototype Integrated Circuits -- A Variation-Tolerant DIMA via On-Chip Training -- Mapping Inference Algorithms to DIMA -- PROMISE: A DIMA-based Accelerator -- Future Prospects -- Index.
This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware. Describes deep in-memory architectures for AI systems from first principles, covering both circuit design and architectures; Discusses how DIMAs pushes the limits of energy-delay product of decision-making machines via its intrinsic energy-SNR trade-off; Offers readers a unique Shannon-inspired perspective to understand the system-level energy-accuracy trade-off and robustness in such architectures; Illustrates principles and design methods via case studies of actual integrated circuit prototypes with measured results in the laboratory; Presents DIMA's various models to evaluate DIMA's decision-making accuracy, energy, and latency trade-offs with various design parameter.
ISBN: 9783030359713$q(electronic bk.)
Standard No.: 10.1007/978-3-030-35971-3doiSubjects--Topical Terms:
202780
Computer storage devices.
LC Class. No.: TK7895.M4 / K364 2020
Dewey Class. No.: 004.5
Deep in-memory architectures for machine learning
LDR
:02332nmm a2200325 a 4500
001
573552
003
DE-He213
005
20200620134817.0
006
m d
007
cr nn 008maaau
008
200928s2020 sz s 0 eng d
020
$a
9783030359713$q(electronic bk.)
020
$a
9783030359706$q(paper)
024
7
$a
10.1007/978-3-030-35971-3
$2
doi
035
$a
978-3-030-35971-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7895.M4
$b
K364 2020
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
072
7
$a
TJFC
$2
thema
082
0 4
$a
004.5
$2
23
090
$a
TK7895.M4
$b
K16 2020
100
1
$a
Kang, Mingu.
$3
860885
245
1 0
$a
Deep in-memory architectures for machine learning
$h
[electronic resource] /
$c
by Mingu Kang, Sujan Gonugondla, Naresh R. Shanbhag.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
x, 174 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- The Deep In-memory Architecture (DIMA) -- DIMA Prototype Integrated Circuits -- A Variation-Tolerant DIMA via On-Chip Training -- Mapping Inference Algorithms to DIMA -- PROMISE: A DIMA-based Accelerator -- Future Prospects -- Index.
520
$a
This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware. Describes deep in-memory architectures for AI systems from first principles, covering both circuit design and architectures; Discusses how DIMAs pushes the limits of energy-delay product of decision-making machines via its intrinsic energy-SNR trade-off; Offers readers a unique Shannon-inspired perspective to understand the system-level energy-accuracy trade-off and robustness in such architectures; Illustrates principles and design methods via case studies of actual integrated circuit prototypes with measured results in the laboratory; Presents DIMA's various models to evaluate DIMA's decision-making accuracy, energy, and latency trade-offs with various design parameter.
650
0
$a
Computer storage devices.
$3
202780
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Circuits and Systems.
$3
274416
650
2 4
$a
Cyber-physical systems, IoT.
$3
836359
650
2 4
$a
Processor Architectures.
$3
274498
700
1
$a
Gonugondla, Sujan.
$3
860886
700
1
$a
Shanbhag, Naresh R.
$3
860887
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-35971-3
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000179912
電子館藏
1圖書
電子書
EB TK7895.M4 K16 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-35971-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入