語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical modelling and machine le...
~
Manisekhar, S. R.
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applicationsedited by K. G. Srinivasa, G. M. Siddesh, S. R. Manisekhar.
其他作者:
Srinivasa, K. G.
出版者:
Singapore :Springer Singapore :2020.
面頁冊數:
xii, 317 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Computational biology.
電子資源:
https://doi.org/10.1007/978-981-15-2445-5
ISBN:
9789811524455$q(electronic bk.)
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
[electronic resource] /edited by K. G. Srinivasa, G. M. Siddesh, S. R. Manisekhar. - Singapore :Springer Singapore :2020. - xii, 317 p. :ill., digital ;24 cm. - Algorithms for intelligent systems,2524-7565. - Algorithms for intelligent systems..
Part 1: Bioinformatics -- Chapter 1. Introduction to Bioinformatics -- Chapter 2. Review about Bioinformatics, Databases, Sequence Alignment, Docking and Drug Discovery -- Chapter 3. Machine Learning for Bioinformatics -- Chapter 4. Impact of Machine Learning in Bioinformatics Research -- Chapter 5. Text-mining in Bioinformatics -- Chapter 6. Open Source Software Tools for Bioinformatics -- Part 2: Protein Structure Prediction and Gene Expression Analysis -- Chapter 7. A Study on Protein Structure Prediction -- Chapter 8. Computational Methods Used in Prediction of Protein Structure -- Chapter 9. Computational Methods for Inference of Gene Regulatory Networks from Gene Expression Data -- Chapter 10. Machine Learning Algorithms for Feature Selection from Gene Expression Data -- Part 3: Genomics and Proteomics -- Chapter 11. Unsupervised Techniques in Genomics -- Chapter 12. Supervised Techniques in Proteomics -- Chapter 13. Visualizing Codon Usage Within and Across Genomes: Concepts and Tools -- Chapter 14. Single-Cell Multiomics: Dissecting Cancer.
This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics. It also highlights the role of computing and machine learning in knowledge extraction from biological data, and how this knowledge can be applied in fields such as drug design, health supplements, gene therapy, proteomics and agriculture.
ISBN: 9789811524455$q(electronic bk.)
Standard No.: 10.1007/978-981-15-2445-5doiSubjects--Topical Terms:
210438
Computational biology.
LC Class. No.: QH324.2 / .S738 2020
Dewey Class. No.: 570.285
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
LDR
:02604nmm a2200337 a 4500
001
573605
003
DE-He213
005
20200620161928.0
006
m d
007
cr nn 008maaau
008
200928s2020 si s 0 eng d
020
$a
9789811524455$q(electronic bk.)
020
$a
9789811524448$q(paper)
024
7
$a
10.1007/978-981-15-2445-5
$2
doi
035
$a
978-981-15-2445-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH324.2
$b
.S738 2020
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
570.285
$2
23
090
$a
QH324.2
$b
.S797 2020
245
0 0
$a
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
$h
[electronic resource] /
$c
edited by K. G. Srinivasa, G. M. Siddesh, S. R. Manisekhar.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xii, 317 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Algorithms for intelligent systems,
$x
2524-7565
505
0
$a
Part 1: Bioinformatics -- Chapter 1. Introduction to Bioinformatics -- Chapter 2. Review about Bioinformatics, Databases, Sequence Alignment, Docking and Drug Discovery -- Chapter 3. Machine Learning for Bioinformatics -- Chapter 4. Impact of Machine Learning in Bioinformatics Research -- Chapter 5. Text-mining in Bioinformatics -- Chapter 6. Open Source Software Tools for Bioinformatics -- Part 2: Protein Structure Prediction and Gene Expression Analysis -- Chapter 7. A Study on Protein Structure Prediction -- Chapter 8. Computational Methods Used in Prediction of Protein Structure -- Chapter 9. Computational Methods for Inference of Gene Regulatory Networks from Gene Expression Data -- Chapter 10. Machine Learning Algorithms for Feature Selection from Gene Expression Data -- Part 3: Genomics and Proteomics -- Chapter 11. Unsupervised Techniques in Genomics -- Chapter 12. Supervised Techniques in Proteomics -- Chapter 13. Visualizing Codon Usage Within and Across Genomes: Concepts and Tools -- Chapter 14. Single-Cell Multiomics: Dissecting Cancer.
520
$a
This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics. It also highlights the role of computing and machine learning in knowledge extraction from biological data, and how this knowledge can be applied in fields such as drug design, health supplements, gene therapy, proteomics and agriculture.
650
0
$a
Computational biology.
$3
210438
650
0
$a
Bioinformatics.
$3
194415
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Computational Biology/Bioinformatics.
$3
274833
650
2 4
$a
Machine Learning.
$3
833608
700
1
$a
Srinivasa, K. G.
$3
339589
700
1
$a
Siddesh, G. M.
$3
860948
700
1
$a
Manisekhar, S. R.
$3
860949
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Algorithms for intelligent systems.
$3
857955
856
4 0
$u
https://doi.org/10.1007/978-981-15-2445-5
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000179965
電子館藏
1圖書
電子書
EB QH324.2 .S797 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-15-2445-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入