語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Partitional clustering via nonsmooth...
~
Bagirov, Adil M.
Partitional clustering via nonsmooth optimizationclustering via optimization /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Partitional clustering via nonsmooth optimizationby Adil M. Bagirov, Napsu Karmitsa, Sona Taheri.
其他題名:
clustering via optimization /
作者:
Bagirov, Adil M.
其他作者:
Karmitsa, Napsu.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xx, 336 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Nonsmooth optimization.
電子資源:
https://doi.org/10.1007/978-3-030-37826-4
ISBN:
9783030378264$q(electronic bk.)
Partitional clustering via nonsmooth optimizationclustering via optimization /
Bagirov, Adil M.
Partitional clustering via nonsmooth optimization
clustering via optimization /[electronic resource] :by Adil M. Bagirov, Napsu Karmitsa, Sona Taheri. - Cham :Springer International Publishing :2020. - xx, 336 p. :ill. (some col.), digital ;24 cm. - Unsupervised and semi-supervised learning,2522-848X. - Unsupervised and semi-supervised learning..
Introduction -- Introduction to Clustering -- Clustering Algorithms -- Nonsmooth Optimization Models in Cluster Analysis -- Nonsmooth Optimization -- Optimization based Clustering Algorithms -- Implementation and Numerical Results -- Conclusion.
This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization. Provides a comprehensive description of clustering algorithms based on nonsmooth and global optimization techniques Addresses problems of real-time clustering in large data sets and challenges arising from big data Describes implementation and evaluation of optimization based clustering algorithms.
ISBN: 9783030378264$q(electronic bk.)
Standard No.: 10.1007/978-3-030-37826-4doiSubjects--Topical Terms:
229311
Nonsmooth optimization.
LC Class. No.: QA402.5 / .B345 2020
Dewey Class. No.: 519.6
Partitional clustering via nonsmooth optimizationclustering via optimization /
LDR
:02468nmm a2200337 a 4500
001
574962
003
DE-He213
005
20200713163658.0
006
m d
007
cr nn 008maaau
008
201016s2020 sz s 0 eng d
020
$a
9783030378264$q(electronic bk.)
020
$a
9783030378257$q(paper)
024
7
$a
10.1007/978-3-030-37826-4
$2
doi
035
$a
978-3-030-37826-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.B345 2020
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.B145 2020
100
1
$a
Bagirov, Adil M.
$3
862740
245
1 0
$a
Partitional clustering via nonsmooth optimization
$h
[electronic resource] :
$b
clustering via optimization /
$c
by Adil M. Bagirov, Napsu Karmitsa, Sona Taheri.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xx, 336 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Unsupervised and semi-supervised learning,
$x
2522-848X
505
0
$a
Introduction -- Introduction to Clustering -- Clustering Algorithms -- Nonsmooth Optimization Models in Cluster Analysis -- Nonsmooth Optimization -- Optimization based Clustering Algorithms -- Implementation and Numerical Results -- Conclusion.
520
$a
This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization. Provides a comprehensive description of clustering algorithms based on nonsmooth and global optimization techniques Addresses problems of real-time clustering in large data sets and challenges arising from big data Describes implementation and evaluation of optimization based clustering algorithms.
650
0
$a
Nonsmooth optimization.
$3
229311
650
1 4
$a
Communications Engineering, Networks.
$3
273745
650
2 4
$a
Pattern Recognition.
$3
273706
650
2 4
$a
Signal, Image and Speech Processing.
$3
273768
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
700
1
$a
Karmitsa, Napsu.
$3
696328
700
1
$a
Taheri, Sona.
$3
862741
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Unsupervised and semi-supervised learning.
$3
834422
856
4 0
$u
https://doi.org/10.1007/978-3-030-37826-4
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000181070
電子館藏
1圖書
電子書
EB QA402.5 .B145 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-37826-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入