語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Next-generation machine learning wit...
~
Quinto, Butch.
Next-generation machine learning with SparkCovers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Next-generation machine learning with Sparkby Butch Quinto.
其他題名:
Covers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
作者:
Quinto, Butch.
出版者:
Berkeley, CA :Apress :2020.
面頁冊數:
xix, 355 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learning.
電子資源:
https://doi.org/10.1007/978-1-4842-5669-5
ISBN:
9781484256695$q(electronic bk.)
Next-generation machine learning with SparkCovers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
Quinto, Butch.
Next-generation machine learning with Spark
Covers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /[electronic resource] :by Butch Quinto. - Berkeley, CA :Apress :2020. - xix, 355 p. :ill., digital ;24 cm.
Chapter 1: Introduction to Machine Learning -- Chapter 2: Introduction to Spark and Spark Mllib -- Chapter 3: Supervised Learning -- Chapter 4: Unsupervised Learning -- Chapter 5: Recommendations -- Chapter 6: Graph Analysis -- Chapter 7: Deep Learning.
Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications. The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry. Next-Generation Machine Learning with Spark provides a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations. You will: Be introduced to machine learning, Spark, and Spark MLlib 2.4.x Achieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM libraries Detect anomalies with the Isolation Forest algorithm for Spark Use the Spark NLP and Stanford CoreNLP libraries that support multiple languages Optimize your ML workload with the Alluxio in-memory data accelerator for Spark Use GraphX and GraphFrames for Graph Analysis Perform image recognition using convolutional neural networks Utilize the Keras framework and distributed deep learning libraries with Spark.
ISBN: 9781484256695$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-5669-5doiSubjects--Uniform Titles:
SPARK (Electronic resource)
Subjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5 / .Q85 2020
Dewey Class. No.: 006.31
Next-generation machine learning with SparkCovers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
LDR
:02613nmm a2200325 a 4500
001
575273
003
DE-He213
005
20200222090415.0
006
m d
007
cr nn 008maaau
008
201016s2020 cau s 0 eng d
020
$a
9781484256695$q(electronic bk.)
020
$a
9781484256688$q(paper)
024
7
$a
10.1007/978-1-4842-5669-5
$2
doi
035
$a
978-1-4842-5669-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.Q85 2020
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.Q7 2020
100
1
$a
Quinto, Butch.
$3
819449
245
1 0
$a
Next-generation machine learning with Spark
$h
[electronic resource] :
$b
Covers XGBoost, LightGBM, Spark NLP, Distributed deep learning with Keras, and more /
$c
by Butch Quinto.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2020.
300
$a
xix, 355 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction to Machine Learning -- Chapter 2: Introduction to Spark and Spark Mllib -- Chapter 3: Supervised Learning -- Chapter 4: Unsupervised Learning -- Chapter 5: Recommendations -- Chapter 6: Graph Analysis -- Chapter 7: Deep Learning.
520
$a
Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications. The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry. Next-Generation Machine Learning with Spark provides a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations. You will: Be introduced to machine learning, Spark, and Spark MLlib 2.4.x Achieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM libraries Detect anomalies with the Isolation Forest algorithm for Spark Use the Spark NLP and Stanford CoreNLP libraries that support multiple languages Optimize your ML workload with the Alluxio in-memory data accelerator for Spark Use GraphX and GraphFrames for Graph Analysis Perform image recognition using convolutional neural networks Utilize the Keras framework and distributed deep learning libraries with Spark.
630
0 0
$a
SPARK (Electronic resource)
$3
347394
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Big Data.
$3
760530
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-5669-5
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000181380
電子館藏
1圖書
電子書
EB Q325.5 .Q7 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-1-4842-5669-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入