語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Planar maps, random walks and circle...
~
(1998 :)
Planar maps, random walks and circle packingEcole d'Ete de probabilites de Saint-Flour XLVIII - 2018 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Planar maps, random walks and circle packingby Asaf Nachmias.
其他題名:
Ecole d'Ete de probabilites de Saint-Flour XLVIII - 2018 /
作者:
Nachmias, Asaf.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xii, 120 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Random walks (Mathematics)
電子資源:
https://doi.org/10.1007/978-3-030-27968-4
ISBN:
9783030279684$q(electronic bk.)
Planar maps, random walks and circle packingEcole d'Ete de probabilites de Saint-Flour XLVIII - 2018 /
Nachmias, Asaf.
Planar maps, random walks and circle packing
Ecole d'Ete de probabilites de Saint-Flour XLVIII - 2018 /[electronic resource] :by Asaf Nachmias. - Cham :Springer International Publishing :2020. - xii, 120 p. :ill. (some col.), digital ;24 cm. - Lecture notes in mathematics,22430075-8434 ;. - Lecture notes in mathematics ;2035..
Open access.
This open access book focuses on the interplay between random walks on planar maps and Koebe's circle packing theorem. Further topics covered include electric networks, the He-Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits. One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided. A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe's circle packing theorem (1936) Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps. The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed.
ISBN: 9783030279684$q(electronic bk.)
Standard No.: 10.1007/978-3-030-27968-4doiSubjects--Topical Terms:
183715
Random walks (Mathematics)
LC Class. No.: QA274.73
Dewey Class. No.: 519.282
Planar maps, random walks and circle packingEcole d'Ete de probabilites de Saint-Flour XLVIII - 2018 /
LDR
:02485nmm a2200349 a 4500
001
576830
003
DE-He213
005
20200225171403.0
006
m d
007
cr nn 008maaau
008
201120s2020 sz s 0 eng d
020
$a
9783030279684$q(electronic bk.)
020
$a
9783030279677$q(paper)
024
7
$a
10.1007/978-3-030-27968-4
$2
doi
035
$a
978-3-030-27968-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.73
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.282
$2
23
090
$a
QA274.73
$b
.N122 2020
100
1
$a
Nachmias, Asaf.
$3
864982
245
1 0
$a
Planar maps, random walks and circle packing
$h
[electronic resource] :
$b
Ecole d'Ete de probabilites de Saint-Flour XLVIII - 2018 /
$c
by Asaf Nachmias.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xii, 120 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2243
506
$a
Open access.
520
$a
This open access book focuses on the interplay between random walks on planar maps and Koebe's circle packing theorem. Further topics covered include electric networks, the He-Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits. One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided. A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe's circle packing theorem (1936) Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps. The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed.
650
0
$a
Random walks (Mathematics)
$3
183715
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
274061
650
2 4
$a
Discrete Mathematics.
$3
524738
650
2 4
$a
Geometry.
$3
183883
650
2 4
$a
Mathematical Physics.
$3
522725
710
2
$a
SpringerLink (Online service)
$3
273601
711
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
https://doi.org/10.1007/978-3-030-27968-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000182124
電子館藏
1圖書
電子書
EB QA274.73 .N122 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-27968-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入