Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
MARS applications in geotechnical en...
~
SpringerLink (Online service)
MARS applications in geotechnical engineering systemsmulti-dimension with big data /
Record Type:
Electronic resources : Monograph/item
Title/Author:
MARS applications in geotechnical engineering systemsby Wengang Zhang.
Reminder of title:
multi-dimension with big data /
Author:
Zhang, Wengang.
Published:
Singapore :Springer Singapore :2020.
Description:
xxi, 240 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
Subject:
Multivariate analysisComputer programs.
Online resource:
https://doi.org/10.1007/978-981-13-7422-7
ISBN:
9789811374227$q(electronic bk.)
MARS applications in geotechnical engineering systemsmulti-dimension with big data /
Zhang, Wengang.
MARS applications in geotechnical engineering systems
multi-dimension with big data /[electronic resource] :by Wengang Zhang. - Singapore :Springer Singapore :2020. - xxi, 240 p. :ill., digital ;24 cm.
Introduction -- MARS methodology -- Simple MARS modeling examples -- MARS use in prediction of collapse potential for compacted soils -- MARS use in prediction of diaphragm wall deflections in soft clays -- MARS use in HP-pile drivability assessment -- MARS use in assessment of soil liquefaction -- MARS use in evaluating entry-type excavation stability -- Summary and conclusions.
This book presents the application of a comparatively simple nonparametric regression algorithm, known as the multivariate adaptive regression splines (MARS) surrogate model, which can be used to approximate the relationship between the inputs and outputs, and express that relationship mathematically. The book first describes the MARS algorithm, then highlights a number of geotechnical applications with multivariate big data sets to explore the approach's generalization capabilities and accuracy. As such, it offers a valuable resource for all geotechnical researchers, engineers, and general readers interested in big data analysis.
ISBN: 9789811374227$q(electronic bk.)
Standard No.: 10.1007/978-981-13-7422-7doiSubjects--Topical Terms:
456771
Multivariate analysis
--Computer programs.
LC Class. No.: QA278
Dewey Class. No.: 519.535
MARS applications in geotechnical engineering systemsmulti-dimension with big data /
LDR
:02025nmm a2200337 a 4500
001
577987
003
DE-He213
005
20200207163404.0
006
m d
007
cr nn 008maaau
008
201208s2020 si s 0 eng d
020
$a
9789811374227$q(electronic bk.)
020
$a
9789811374210$q(paper)
024
7
$a
10.1007/978-981-13-7422-7
$2
doi
035
$a
978-981-13-7422-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278
072
7
$a
RBP
$2
bicssc
072
7
$a
SCI042000
$2
bisacsh
072
7
$a
RBP
$2
thema
072
7
$a
RBGK
$2
thema
082
0 4
$a
519.535
$2
23
090
$a
QA278
$b
.Z63 2020
100
1
$a
Zhang, Wengang.
$3
866612
245
1 0
$a
MARS applications in geotechnical engineering systems
$h
[electronic resource] :
$b
multi-dimension with big data /
$c
by Wengang Zhang.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xxi, 240 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- MARS methodology -- Simple MARS modeling examples -- MARS use in prediction of collapse potential for compacted soils -- MARS use in prediction of diaphragm wall deflections in soft clays -- MARS use in HP-pile drivability assessment -- MARS use in assessment of soil liquefaction -- MARS use in evaluating entry-type excavation stability -- Summary and conclusions.
520
$a
This book presents the application of a comparatively simple nonparametric regression algorithm, known as the multivariate adaptive regression splines (MARS) surrogate model, which can be used to approximate the relationship between the inputs and outputs, and express that relationship mathematically. The book first describes the MARS algorithm, then highlights a number of geotechnical applications with multivariate big data sets to explore the approach's generalization capabilities and accuracy. As such, it offers a valuable resource for all geotechnical researchers, engineers, and general readers interested in big data analysis.
650
0
$a
Multivariate analysis
$x
Computer programs.
$3
456771
650
0
$a
Geotechnical engineering.
$3
678999
650
0
$a
Big data.
$3
609582
650
1 4
$a
Geoengineering, Foundations, Hydraulics.
$3
338647
650
2 4
$a
Geotechnical Engineering & Applied Earth Sciences.
$3
542182
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Big Data/Analytics.
$3
742047
650
2 4
$a
Input/Output and Data Communications.
$3
274473
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-7422-7
950
$a
Engineering (Springer-11647)
based on 0 review(s)
ALL
電子館藏
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
000000182885
電子館藏
1圖書
電子書
EB QA278 .Z63 2020 2020
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Multimedia file
https://doi.org/10.1007/978-981-13-7422-7
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login