語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Notes on geometry and arithmetic
~
Coray, Daniel.
Notes on geometry and arithmetic
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Notes on geometry and arithmeticby Daniel Coray.
作者:
Coray, Daniel.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xii, 181 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Arithmetical algebraic geometry.
電子資源:
https://doi.org/10.1007/978-3-030-43781-7
ISBN:
9783030437817$q(electronic bk.)
Notes on geometry and arithmetic
Coray, Daniel.
Notes on geometry and arithmetic
[electronic resource] /by Daniel Coray. - Cham :Springer International Publishing :2020. - xii, 181 p. :ill., digital ;24 cm. - Universitext,0172-5939. - Universitext..
Chapter 1. Diophantus of Alexandria -- Chapter 2. Algebraic closure; affine space -- Chapter 3. Rational points; finite fields -- Chapter 4. Projective varieties; conics and quadrics -- Chapter 5. The Nullstellensatz -- Chapter 6. Euclidean rings -- Chapter 7. Cubic surfaces -- Chapter 8. p-adic completions -- Chapter 9. The Hasse principle -- Chapter 10. Diophantine dimension of fields.
This English translation of Daniel Coray's original French textbook Notes de geometrie et d'arithmetique introduces students to Diophantine geometry. It engages the reader with concrete and interesting problems using the language of classical geometry, setting aside all but the most essential ideas from algebraic geometry and commutative algebra. Readers are invited to discover rational points on varieties through an appealing 'hands on' approach that offers a pathway toward active research in arithmetic geometry. Along the way, the reader encounters the state of the art on solving certain classes of polynomial equations with beautiful geometric realizations, and travels a unique ascent towards variations on the Hasse Principle. Highlighting the importance of Diophantus of Alexandria as a precursor to the study of arithmetic over the rational numbers, this textbook introduces basic notions with an emphasis on Hilbert's Nullstellensatz over an arbitrary field. A digression on Euclidian rings is followed by a thorough study of the arithmetic theory of cubic surfaces. Subsequent chapters are devoted to p-adic fields, the Hasse principle, and the subtle notion of Diophantine dimension of fields. All chapters contain exercises, with hints or complete solutions. Notes on Geometry and Arithmetic will appeal to a wide readership, ranging from graduate students through to researchers. Assuming only a basic background in abstract algebra and number theory, the text uses Diophantine questions to motivate readers seeking an accessible pathway into arithmetic geometry.
ISBN: 9783030437817$q(electronic bk.)
Standard No.: 10.1007/978-3-030-43781-7doiSubjects--Topical Terms:
347677
Arithmetical algebraic geometry.
LC Class. No.: QA242.5 / .C673 2020
Dewey Class. No.: 516.35
Notes on geometry and arithmetic
LDR
:02975nmm a2200337 a 4500
001
583736
003
DE-He213
005
20201117093405.0
006
m d
007
cr nn 008maaau
008
210202s2020 sz s 0 eng d
020
$a
9783030437817$q(electronic bk.)
020
$a
9783030437800$q(paper)
024
7
$a
10.1007/978-3-030-43781-7
$2
doi
035
$a
978-3-030-43781-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA242.5
$b
.C673 2020
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
090
$a
QA242.5
$b
.C788 2020
100
1
$a
Coray, Daniel.
$3
874448
245
1 0
$a
Notes on geometry and arithmetic
$h
[electronic resource] /
$c
by Daniel Coray.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xii, 181 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
Chapter 1. Diophantus of Alexandria -- Chapter 2. Algebraic closure; affine space -- Chapter 3. Rational points; finite fields -- Chapter 4. Projective varieties; conics and quadrics -- Chapter 5. The Nullstellensatz -- Chapter 6. Euclidean rings -- Chapter 7. Cubic surfaces -- Chapter 8. p-adic completions -- Chapter 9. The Hasse principle -- Chapter 10. Diophantine dimension of fields.
520
$a
This English translation of Daniel Coray's original French textbook Notes de geometrie et d'arithmetique introduces students to Diophantine geometry. It engages the reader with concrete and interesting problems using the language of classical geometry, setting aside all but the most essential ideas from algebraic geometry and commutative algebra. Readers are invited to discover rational points on varieties through an appealing 'hands on' approach that offers a pathway toward active research in arithmetic geometry. Along the way, the reader encounters the state of the art on solving certain classes of polynomial equations with beautiful geometric realizations, and travels a unique ascent towards variations on the Hasse Principle. Highlighting the importance of Diophantus of Alexandria as a precursor to the study of arithmetic over the rational numbers, this textbook introduces basic notions with an emphasis on Hilbert's Nullstellensatz over an arbitrary field. A digression on Euclidian rings is followed by a thorough study of the arithmetic theory of cubic surfaces. Subsequent chapters are devoted to p-adic fields, the Hasse principle, and the subtle notion of Diophantine dimension of fields. All chapters contain exercises, with hints or complete solutions. Notes on Geometry and Arithmetic will appeal to a wide readership, ranging from graduate students through to researchers. Assuming only a basic background in abstract algebra and number theory, the text uses Diophantine questions to motivate readers seeking an accessible pathway into arithmetic geometry.
650
0
$a
Arithmetical algebraic geometry.
$3
347677
650
0
$a
Geometry.
$3
183883
650
1 4
$a
Algebraic Geometry.
$3
274807
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Universitext.
$3
558272
856
4 0
$u
https://doi.org/10.1007/978-3-030-43781-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000187856
電子館藏
1圖書
電子書
EB QA242.5 .C788 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-43781-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入