語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Homotopy theory with Bornological co...
~
Bunke, Ulrich.
Homotopy theory with Bornological coarse spaces
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Homotopy theory with Bornological coarse spacesby Ulrich Bunke, Alexander Engel.
作者:
Bunke, Ulrich.
其他作者:
Engel, Alexander.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
vii, 245 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Homotopy theory.
電子資源:
https://doi.org/10.1007/978-3-030-51335-1
ISBN:
9783030513351$q(electronic bk.)
Homotopy theory with Bornological coarse spaces
Bunke, Ulrich.
Homotopy theory with Bornological coarse spaces
[electronic resource] /by Ulrich Bunke, Alexander Engel. - Cham :Springer International Publishing :2020. - vii, 245 p. :ill., digital ;24 cm. - Lecture notes in mathematics,v.22690075-8434 ;. - Lecture notes in mathematics ;2035..
Providing a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories. The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories.
ISBN: 9783030513351$q(electronic bk.)
Standard No.: 10.1007/978-3-030-51335-1doiSubjects--Topical Terms:
209299
Homotopy theory.
LC Class. No.: QA612.7 / .B865 2020
Dewey Class. No.: 514.24
Homotopy theory with Bornological coarse spaces
LDR
:02040nmm a2200325 a 4500
001
585418
003
DE-He213
005
20201228150600.0
006
m d
007
cr nn 008maaau
008
210311s2020 sz s 0 eng d
020
$a
9783030513351$q(electronic bk.)
020
$a
9783030513344$q(paper)
024
7
$a
10.1007/978-3-030-51335-1
$2
doi
035
$a
978-3-030-51335-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA612.7
$b
.B865 2020
072
7
$a
PBPD
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
072
7
$a
PBPD
$2
thema
082
0 4
$a
514.24
$2
23
090
$a
QA612.7
$b
.B942 2020
100
1
$a
Bunke, Ulrich.
$3
876424
245
1 0
$a
Homotopy theory with Bornological coarse spaces
$h
[electronic resource] /
$c
by Ulrich Bunke, Alexander Engel.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
vii, 245 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
v.2269
520
$a
Providing a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories. The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories.
650
0
$a
Homotopy theory.
$3
209299
650
0
$a
Bornological spaces.
$3
661692
650
1 4
$a
K-Theory.
$3
277863
650
2 4
$a
Geometry.
$3
183883
650
2 4
$a
Algebraic Topology.
$3
273784
700
1
$a
Engel, Alexander.
$3
876425
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
https://doi.org/10.1007/978-3-030-51335-1
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000189354
電子館藏
1圖書
電子書
EB QA612.7 .B942 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-51335-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入