語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The data science frameworka view fro...
~
Cuadrado-Gallego, Juan J.
The data science frameworka view from the Edison Project /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The data science frameworkedited by Juan J. Cuadrado-Gallego, Yuri Demchenko.
其他題名:
a view from the Edison Project /
其他作者:
Cuadrado-Gallego, Juan J.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xiv, 194 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Data miningStudy and teaching.
電子資源:
https://doi.org/10.1007/978-3-030-51023-7
ISBN:
9783030510237$q(electronic bk.)
The data science frameworka view from the Edison Project /
The data science framework
a view from the Edison Project /[electronic resource] :edited by Juan J. Cuadrado-Gallego, Yuri Demchenko. - Cham :Springer International Publishing :2020. - xiv, 194 p. :ill., digital ;24 cm.
Introduction to the Data Science Framework -- Data Science Competences -- Data Science Body of Knowledge -- Data Science Curriculum -- Data Science Professional Profiles -- Use Cases and Applications -- App. A, Data Science Related Process Models.
This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines.
ISBN: 9783030510237$q(electronic bk.)
Standard No.: 10.1007/978-3-030-51023-7doiSubjects--Topical Terms:
677068
Data mining
--Study and teaching.
LC Class. No.: QA76.9.D343 / D38 2020
Dewey Class. No.: 006.312
The data science frameworka view from the Edison Project /
LDR
:02442nmm a2200337 a 4500
001
585925
003
DE-He213
005
20201001123928.0
006
m d
007
cr nn 008maaau
008
210323s2020 sz s 0 eng d
020
$a
9783030510237$q(electronic bk.)
020
$a
9783030510220$q(paper)
024
7
$a
10.1007/978-3-030-51023-7
$2
doi
035
$a
978-3-030-51023-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
D38 2020
072
7
$a
UMB
$2
bicssc
072
7
$a
COM031000
$2
bisacsh
072
7
$a
UMB
$2
thema
072
7
$a
GPF
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
D232 2020
245
0 4
$a
The data science framework
$h
[electronic resource] :
$b
a view from the Edison Project /
$c
edited by Juan J. Cuadrado-Gallego, Yuri Demchenko.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xiv, 194 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction to the Data Science Framework -- Data Science Competences -- Data Science Body of Knowledge -- Data Science Curriculum -- Data Science Professional Profiles -- Use Cases and Applications -- App. A, Data Science Related Process Models.
520
$a
This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines.
650
0
$a
Data mining
$x
Study and teaching.
$3
677068
650
0
$a
Big data
$x
Study and teaching.
$3
849290
650
1 4
$a
Data Structures and Information Theory.
$3
825714
650
2 4
$a
The Computing Profession.
$3
275271
650
2 4
$a
Data Engineering.
$3
839346
650
2 4
$a
Statistics, general.
$3
275684
700
1
$a
Cuadrado-Gallego, Juan J.
$3
286473
700
1
$a
Demchenko, Yuri.
$3
877190
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-51023-7
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000189742
電子館藏
1圖書
電子書
EB QA76.9.D343 D232 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-51023-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入