語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hecke's L-functionsSpring, 1964 /
~
Iwasawa, Kenkichi.
Hecke's L-functionsSpring, 1964 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Hecke's L-functionsby Kenkichi Iwasawa.
其他題名:
Spring, 1964 /
作者:
Iwasawa, Kenkichi.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
xi, 93 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
L-functions.
電子資源:
https://doi.org/10.1007/978-981-13-9495-9
ISBN:
9789811394959$q(electronic bk.)
Hecke's L-functionsSpring, 1964 /
Iwasawa, Kenkichi.
Hecke's L-functions
Spring, 1964 /[electronic resource] :by Kenkichi Iwasawa. - Singapore :Springer Singapore :2019. - xi, 93 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
This volume contains the notes originally made by Kenkichi Iwasawa in his own handwriting for his lecture course at Princeton University in 1964. These notes give a beautiful and completely detailed account of the adelic approach to Hecke's L-functions attached to any number field, including the proof of analytic continuation, the functional equation of these L-functions, and the class number formula arising from the Dedekind zeta function for a general number field. This adelic approach was discovered independently by Iwasawa and Tate around 1950 and marked the beginning of the whole modern adelic approach to automorphic forms and L-series. While Tate's thesis at Princeton in 1950 was finally published in 1967 in the volume Algebraic Number Theory, edited by Cassels and Frohlich, no detailed account of Iwasawa's work has been published until now, and this volume is intended to fill the gap in the literature of one of the key areas of modern number theory. In the final chapter, Iwasawa elegantly explains some important classical results, such as the distribution of prime ideals and the class number formulae for cyclotomic fields.
ISBN: 9789811394959$q(electronic bk.)
Standard No.: 10.1007/978-981-13-9495-9doiSubjects--Topical Terms:
240097
L-functions.
LC Class. No.: QA246 / .I83 2019
Dewey Class. No.: 512.73
Hecke's L-functionsSpring, 1964 /
LDR
:02152nmm a2200325 a 4500
001
587221
003
DE-He213
005
20200702043136.0
006
m d
007
cr nn 008maaau
008
210326s2019 si s 0 eng d
020
$a
9789811394959$q(electronic bk.)
020
$a
9789811394942$q(paper)
024
7
$a
10.1007/978-981-13-9495-9
$2
doi
035
$a
978-981-13-9495-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA246
$b
.I83 2019
072
7
$a
PBH
$2
bicssc
072
7
$a
MAT022000
$2
bisacsh
072
7
$a
PBH
$2
thema
082
0 4
$a
512.73
$2
23
090
$a
QA246
$b
.I96 2019
100
1
$a
Iwasawa, Kenkichi.
$3
878783
245
1 0
$a
Hecke's L-functions
$h
[electronic resource] :
$b
Spring, 1964 /
$c
by Kenkichi Iwasawa.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xi, 93 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
520
$a
This volume contains the notes originally made by Kenkichi Iwasawa in his own handwriting for his lecture course at Princeton University in 1964. These notes give a beautiful and completely detailed account of the adelic approach to Hecke's L-functions attached to any number field, including the proof of analytic continuation, the functional equation of these L-functions, and the class number formula arising from the Dedekind zeta function for a general number field. This adelic approach was discovered independently by Iwasawa and Tate around 1950 and marked the beginning of the whole modern adelic approach to automorphic forms and L-series. While Tate's thesis at Princeton in 1950 was finally published in 1967 in the volume Algebraic Number Theory, edited by Cassels and Frohlich, no detailed account of Iwasawa's work has been published until now, and this volume is intended to fill the gap in the literature of one of the key areas of modern number theory. In the final chapter, Iwasawa elegantly explains some important classical results, such as the distribution of prime ideals and the class number formulae for cyclotomic fields.
650
0
$a
L-functions.
$3
240097
650
0
$a
Hecke algebras.
$3
239613
650
1 4
$a
Number Theory.
$3
274059
650
2 4
$a
Functions of a Complex Variable.
$3
275780
650
2 4
$a
Field Theory and Polynomials.
$3
274058
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in mathematics.
$3
558795
856
4 0
$u
https://doi.org/10.1007/978-981-13-9495-9
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000191006
電子館藏
1圖書
電子書
EB QA246 .I96 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-9495-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入