語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Engineering dependable and secure ma...
~
(1998 :)
Engineering dependable and secure machine learning systemsthird international workshop, EDSMLS 2020, New York City, NY, USA, February 7, 2020 : revised selected papers /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Engineering dependable and secure machine learning systemsedited by Onn Shehory, Eitan Farchi, Guy Barash.
其他題名:
third international workshop, EDSMLS 2020, New York City, NY, USA, February 7, 2020 : revised selected papers /
其他題名:
EDSMLS 2020
其他作者:
Shehory, Onn.
團體作者:
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
ix, 141 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Machine learningCongresses.
電子資源:
https://doi.org/10.1007/978-3-030-62144-5
ISBN:
9783030621445$q(electronic bk.)
Engineering dependable and secure machine learning systemsthird international workshop, EDSMLS 2020, New York City, NY, USA, February 7, 2020 : revised selected papers /
Engineering dependable and secure machine learning systems
third international workshop, EDSMLS 2020, New York City, NY, USA, February 7, 2020 : revised selected papers /[electronic resource] :EDSMLS 2020edited by Onn Shehory, Eitan Farchi, Guy Barash. - Cham :Springer International Publishing :2020. - ix, 141 p. :ill., digital ;24 cm. - Communications in computer and information science,12721865-0929 ;. - Communications in computer and information science ;229..
Quality Management of Deep Learning Systems -- Can Attention Masks Improve Adversarial Robustness? -- Learner-Independent Data Omission Attacks -- Extraction of Complex DNN Models: Real Threat or Boogeyman? -- Principal Component Properties of Adversarial Samples -- FreaAI: Automated extraction of data slices to test machine learning models -- Density estimation in representation space to predict model uncertainty -- Automated detection of drift in deep learning based classifiers using network embedding -- Quality of syntactic implication of RL-based sentence summarization -- Dependable Neural Networks for Safety Critical Tasks.
This book constitutes the revised selected papers of the Third International Workshop on Engineering Dependable and Secure Machine Learning Systems, EDSMLS 2020, held in New York City, NY, USA, in February 2020. The 7 full papers and 3 short papers were thoroughly reviewed and selected from 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML software systems, adversarial ML and software engineering, etc.
ISBN: 9783030621445$q(electronic bk.)
Standard No.: 10.1007/978-3-030-62144-5doiSubjects--Topical Terms:
384498
Machine learning
--Congresses.
LC Class. No.: Q325.5
Dewey Class. No.: 006.3
Engineering dependable and secure machine learning systemsthird international workshop, EDSMLS 2020, New York City, NY, USA, February 7, 2020 : revised selected papers /
LDR
:02354nmm a2200349 a 4500
001
589341
003
DE-He213
005
20201109130551.0
006
m d
007
cr nn 008maaau
008
210601s2020 sz s 0 eng d
020
$a
9783030621445$q(electronic bk.)
020
$a
9783030621438$q(paper)
024
7
$a
10.1007/978-3-030-62144-5
$2
doi
035
$a
978-3-030-62144-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
Q325.5
$b
.A111 2020
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Engineering dependable and secure machine learning systems
$h
[electronic resource] :
$b
third international workshop, EDSMLS 2020, New York City, NY, USA, February 7, 2020 : revised selected papers /
$c
edited by Onn Shehory, Eitan Farchi, Guy Barash.
246
3
$a
EDSMLS 2020
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
ix, 141 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Communications in computer and information science,
$x
1865-0929 ;
$v
1272
505
0
$a
Quality Management of Deep Learning Systems -- Can Attention Masks Improve Adversarial Robustness? -- Learner-Independent Data Omission Attacks -- Extraction of Complex DNN Models: Real Threat or Boogeyman? -- Principal Component Properties of Adversarial Samples -- FreaAI: Automated extraction of data slices to test machine learning models -- Density estimation in representation space to predict model uncertainty -- Automated detection of drift in deep learning based classifiers using network embedding -- Quality of syntactic implication of RL-based sentence summarization -- Dependable Neural Networks for Safety Critical Tasks.
520
$a
This book constitutes the revised selected papers of the Third International Workshop on Engineering Dependable and Secure Machine Learning Systems, EDSMLS 2020, held in New York City, NY, USA, in February 2020. The 7 full papers and 3 short papers were thoroughly reviewed and selected from 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML software systems, adversarial ML and software engineering, etc.
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
0
$a
Artificial intelligence
$3
252958
650
0
$a
Computer security
$v
Congresses.
$3
383239
650
0
$a
Computers.
$3
202174
650
0
$a
Application software.
$3
200645
650
2 4
$a
Information Systems and Communication Service.
$3
274025
650
2 4
$a
Computer Appl. in Social and Behavioral Sciences.
$3
274376
650
2 4
$a
Computers and Education.
$3
274532
700
1
$a
Shehory, Onn.
$3
585107
700
1
$a
Farchi, Eitan.
$3
881195
700
1
$a
Barash, Guy.
$3
881196
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Communications in computer and information science ;
$v
229.
$3
547963
856
4 0
$u
https://doi.org/10.1007/978-3-030-62144-5
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000191776
電子館藏
1圖書
電子書
EB Q325.5 .A111 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-62144-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入