語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Python for marketing research and an...
~
Chapman, Chris.
Python for marketing research and analytics
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Python for marketing research and analyticsby Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit.
作者:
Schwarz, Jason S.
其他作者:
Chapman, Chris.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xi, 272 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
MarketingData processing.
電子資源:
https://doi.org/10.1007/978-3-030-49720-0
ISBN:
9783030497200$q(electronic bk.)
Python for marketing research and analytics
Schwarz, Jason S.
Python for marketing research and analytics
[electronic resource] /by Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit. - Cham :Springer International Publishing :2020. - xi, 272 p. :ill. (some col.), digital ;24 cm.
Part I: Basics of Python -- Chapter 1: Welcome to Python -- Chapter 2: The Python Language -- Part II Fundamentals of Data Analysis -- Chapter 3: Describing Data -- Chapter 4: Relationships Between Continuous Variables -- Chapter 5: Comparing Groups: Tables and Visualizations -- Chapter 6: Comparing Groups: Statistical Tests -- Chapter 7: Identifying Drivers of Outcomes: Linear Models -- Chapter 8: Additional Linear Modeling Topics -- Part III Advanced data analysis -- Chapter 9: Reducing Data Complexity -- Chapter 10: Segmentation: Unsupervised Clustering Methods for Exploring Subpopulations -- Chapter 11: Classification: Assigning observations to known categories -- Chapter 12: Conclusion -- Index.
This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.
ISBN: 9783030497200$q(electronic bk.)
Standard No.: 10.1007/978-3-030-49720-0doiSubjects--Topical Terms:
221562
Marketing
--Data processing.
LC Class. No.: HF5415.125
Dewey Class. No.: 658.830285
Python for marketing research and analytics
LDR
:02846nmm a2200325 a 4500
001
589621
003
DE-He213
005
20210310095306.0
006
m d
007
cr nn 008maaau
008
210601s2020 sz s 0 eng d
020
$a
9783030497200$q(electronic bk.)
020
$a
9783030497194$q(paper)
024
7
$a
10.1007/978-3-030-49720-0
$2
doi
035
$a
978-3-030-49720-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HF5415.125
072
7
$a
UFM
$2
bicssc
072
7
$a
COM077000
$2
bisacsh
072
7
$a
UFM
$2
thema
082
0 4
$a
658.830285
$2
23
090
$a
HF5415.125
$b
.S411 2020
100
1
$a
Schwarz, Jason S.
$3
881591
245
1 0
$a
Python for marketing research and analytics
$h
[electronic resource] /
$c
by Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xi, 272 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Part I: Basics of Python -- Chapter 1: Welcome to Python -- Chapter 2: The Python Language -- Part II Fundamentals of Data Analysis -- Chapter 3: Describing Data -- Chapter 4: Relationships Between Continuous Variables -- Chapter 5: Comparing Groups: Tables and Visualizations -- Chapter 6: Comparing Groups: Statistical Tests -- Chapter 7: Identifying Drivers of Outcomes: Linear Models -- Chapter 8: Additional Linear Modeling Topics -- Part III Advanced data analysis -- Chapter 9: Reducing Data Complexity -- Chapter 10: Segmentation: Unsupervised Clustering Methods for Exploring Subpopulations -- Chapter 11: Classification: Assigning observations to known categories -- Chapter 12: Conclusion -- Index.
520
$a
This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.
650
0
$a
Marketing
$x
Data processing.
$3
221562
650
0
$a
Marketing research.
$3
200345
650
0
$a
Python (Computer program language)
$3
215247
650
0
$a
Information visualization.
$3
248886
650
1 4
$a
Statistics and Computing/Statistics Programs.
$3
275710
650
2 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
825914
650
2 4
$a
Statistics for Social Sciences, Humanities, Law.
$3
825904
700
1
$a
Chapman, Chris.
$3
323652
700
1
$a
Feit, Elea McDonnell.
$3
715989
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-49720-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000192056
電子館藏
1圖書
電子書
EB HF5415.125 .S411 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-49720-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入