語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Substitution and tiling dynamicsintr...
~
Akiyama, Shigeki.
Substitution and tiling dynamicsintroduction to self-inducing structures : CIRM Jean-Morlet chair, Fall 2017 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Substitution and tiling dynamicsedited by Shigeki Akiyama, Pierre Arnoux.
其他題名:
introduction to self-inducing structures : CIRM Jean-Morlet chair, Fall 2017 /
其他作者:
Akiyama, Shigeki.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xix, 456 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Tiling (Mathematics)
電子資源:
https://doi.org/10.1007/978-3-030-57666-0
ISBN:
9783030576660$q(electronic bk.)
Substitution and tiling dynamicsintroduction to self-inducing structures : CIRM Jean-Morlet chair, Fall 2017 /
Substitution and tiling dynamics
introduction to self-inducing structures : CIRM Jean-Morlet chair, Fall 2017 /[electronic resource] :edited by Shigeki Akiyama, Pierre Arnoux. - Cham :Springer International Publishing :2020. - xix, 456 p. :ill. (some col.), digital ;24 cm. - Lecture notes in mathematics,v.22730075-8434 ;. - Lecture notes in mathematics ;2035..
Delone sets and dynamical systems -- Introduction to hierarchical tiling dynamical systems -- S-adic sequences : dynamics, arithmetic, and geometry -- Operators and Algebras for Aperiodic Tilings -- From games to morphisms -- The Undecidability of the Domino Problem -- Renormalisation for block substitutions -- Yet another characterization of the Pisot conjecture.
This book presents a panorama of recent developments in the theory of tilings and related dynamical systems. It contains an expanded version of courses given in 2017 at the research school associated with the Jean-Morlet chair program. Tilings have been designed, used and studied for centuries in various contexts. This field grew significantly after the discovery of aperiodic self-similar tilings in the 60s, linked to the proof of the undecidability of the Domino problem, and was driven futher by Dan Shechtman's discovery of quasicrystals in 1984. Tiling problems establish a bridge between the mutually influential fields of geometry, dynamical systems, aperiodic order, computer science, number theory, algebra and logic. The main properties of tiling dynamical systems are covered, with expositions on recent results in self-similarity (and its generalizations, fusions rules and S-adic systems), algebraic developments connected to physics, games and undecidability questions, and the spectrum of substitution tilings.
ISBN: 9783030576660$q(electronic bk.)
Standard No.: 10.1007/978-3-030-57666-0doiSubjects--Topical Terms:
189530
Tiling (Mathematics)
LC Class. No.: QA313 / .S837 2020
Dewey Class. No.: 515.39
Substitution and tiling dynamicsintroduction to self-inducing structures : CIRM Jean-Morlet chair, Fall 2017 /
LDR
:02536nmm a2200337 a 4500
001
591545
003
DE-He213
005
20210322173402.0
006
m d
007
cr nn 008maaau
008
210629s2020 sz s 0 eng d
020
$a
9783030576660$q(electronic bk.)
020
$a
9783030576653$q(paper)
024
7
$a
10.1007/978-3-030-57666-0
$2
doi
035
$a
978-3-030-57666-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA313
$b
.S837 2020
072
7
$a
PBWR
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBWR
$2
thema
082
0 4
$a
515.39
$2
23
090
$a
QA313
$b
.S941 2020
245
0 0
$a
Substitution and tiling dynamics
$h
[electronic resource] :
$b
introduction to self-inducing structures : CIRM Jean-Morlet chair, Fall 2017 /
$c
edited by Shigeki Akiyama, Pierre Arnoux.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xix, 456 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
v.2273
505
0
$a
Delone sets and dynamical systems -- Introduction to hierarchical tiling dynamical systems -- S-adic sequences : dynamics, arithmetic, and geometry -- Operators and Algebras for Aperiodic Tilings -- From games to morphisms -- The Undecidability of the Domino Problem -- Renormalisation for block substitutions -- Yet another characterization of the Pisot conjecture.
520
$a
This book presents a panorama of recent developments in the theory of tilings and related dynamical systems. It contains an expanded version of courses given in 2017 at the research school associated with the Jean-Morlet chair program. Tilings have been designed, used and studied for centuries in various contexts. This field grew significantly after the discovery of aperiodic self-similar tilings in the 60s, linked to the proof of the undecidability of the Domino problem, and was driven futher by Dan Shechtman's discovery of quasicrystals in 1984. Tiling problems establish a bridge between the mutually influential fields of geometry, dynamical systems, aperiodic order, computer science, number theory, algebra and logic. The main properties of tiling dynamical systems are covered, with expositions on recent results in self-similarity (and its generalizations, fusions rules and S-adic systems), algebraic developments connected to physics, games and undecidability questions, and the spectrum of substitution tilings.
650
0
$a
Tiling (Mathematics)
$3
189530
650
0
$a
Sequences (Mathematics)
$3
228268
650
0
$a
Aperiodicity.
$3
272982
650
0
$a
Topological dynamics.
$3
468099
650
1 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
650
2 4
$a
Vibration, Dynamical Systems, Control.
$3
274667
650
2 4
$a
Computer Science, general.
$3
274540
650
2 4
$a
Convex and Discrete Geometry.
$3
277230
700
1
$a
Akiyama, Shigeki.
$3
883107
700
1
$a
Arnoux, Pierre.
$3
883108
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
https://doi.org/10.1007/978-3-030-57666-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000192554
電子館藏
1圖書
電子書
EB QA313 .S941 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-57666-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入