語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
DNA computing based genetic algorith...
~
SpringerLink (Online service)
DNA computing based genetic algorithmapplications industrial process modeling and control /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
DNA computing based genetic algorithmby Jili Tao, Ridong Zhang, Yong Zhu.
其他題名:
applications industrial process modeling and control /
作者:
Tao, Jili.
其他作者:
Zhang, Ridong.
出版者:
Singapore :Springer Singapore :2020.
面頁冊數:
ix, 274 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Genetic algorithms.
電子資源:
https://doi.org/10.1007/978-981-15-5403-2
ISBN:
9789811554032$q(electronic bk.)
DNA computing based genetic algorithmapplications industrial process modeling and control /
Tao, Jili.
DNA computing based genetic algorithm
applications industrial process modeling and control /[electronic resource] :by Jili Tao, Ridong Zhang, Yong Zhu. - Singapore :Springer Singapore :2020. - ix, 274 p. :ill., digital ;24 cm.
Introduction -- DNA computing based RNA-GA -- DNA double-helix based hybrid genetic algorithm -- DNA computing based multi-objective genetic algorithm -- Parameter identification and optimization for chemical process -- RBF neural network for nonlinear SISO system -- T-S Fuzzy neural network for nonlinear SISO system -- PCA & GA based ARX plus RBF Modeling for Nonlinear DPS -- GA based predictive control design -- MOGA based PID controller design -- Concluding Remarks.
This book focuses on the implementation, evaluation and application of DNA/RNA-based genetic algorithms in connection with neural network modeling, fuzzy control, the Q-learning algorithm and CNN deep learning classifier. It presents several DNA/RNA-based genetic algorithms and their modifications, which are tested using benchmarks, as well as detailed information on the implementation steps and program code. In addition to single-objective optimization, here genetic algorithms are also used to solve multi-objective optimization for neural network modeling, fuzzy control, model predictive control and PID control. In closing, new topics such as Q-learning and CNN are introduced. The book offers a valuable reference guide for researchers and designers in system modeling and control, and for senior undergraduate and graduate students at colleges and universities.
ISBN: 9789811554032$q(electronic bk.)
Standard No.: 10.1007/978-981-15-5403-2doiSubjects--Topical Terms:
182939
Genetic algorithms.
LC Class. No.: QA402.5 / .T36 2020
Dewey Class. No.: 519.625
DNA computing based genetic algorithmapplications industrial process modeling and control /
LDR
:02390nmm a2200325 a 4500
001
593298
003
DE-He213
005
20200705213955.0
006
m d
007
cr nn 008maaau
008
210727s2020 si s 0 eng d
020
$a
9789811554032$q(electronic bk.)
020
$a
9789811554025$q(paper)
024
7
$a
10.1007/978-981-15-5403-2
$2
doi
035
$a
978-981-15-5403-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.T36 2020
072
7
$a
PDE
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
PDE
$2
thema
082
0 4
$a
519.625
$2
23
090
$a
QA402.5
$b
.T171 2020
100
1
$a
Tao, Jili.
$3
884641
245
1 0
$a
DNA computing based genetic algorithm
$h
[electronic resource] :
$b
applications industrial process modeling and control /
$c
by Jili Tao, Ridong Zhang, Yong Zhu.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
ix, 274 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- DNA computing based RNA-GA -- DNA double-helix based hybrid genetic algorithm -- DNA computing based multi-objective genetic algorithm -- Parameter identification and optimization for chemical process -- RBF neural network for nonlinear SISO system -- T-S Fuzzy neural network for nonlinear SISO system -- PCA & GA based ARX plus RBF Modeling for Nonlinear DPS -- GA based predictive control design -- MOGA based PID controller design -- Concluding Remarks.
520
$a
This book focuses on the implementation, evaluation and application of DNA/RNA-based genetic algorithms in connection with neural network modeling, fuzzy control, the Q-learning algorithm and CNN deep learning classifier. It presents several DNA/RNA-based genetic algorithms and their modifications, which are tested using benchmarks, as well as detailed information on the implementation steps and program code. In addition to single-objective optimization, here genetic algorithms are also used to solve multi-objective optimization for neural network modeling, fuzzy control, model predictive control and PID control. In closing, new topics such as Q-learning and CNN are introduced. The book offers a valuable reference guide for researchers and designers in system modeling and control, and for senior undergraduate and graduate students at colleges and universities.
650
0
$a
Genetic algorithms.
$3
182939
650
0
$a
Molecular computers.
$3
225416
650
1 4
$a
Computational Science and Engineering.
$3
274685
650
2 4
$a
Control and Systems Theory.
$3
825946
650
2 4
$a
Artificial Intelligence.
$3
212515
700
1
$a
Zhang, Ridong.
$3
848262
700
1
$a
Zhu, Yong.
$3
769980
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-15-5403-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000193288
電子館藏
1圖書
電子書
EB QA402.5 .T171 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-15-5403-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入