語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Socio-inspired optimization methods ...
~
Kulkarni, Anand J.
Socio-inspired optimization methods for advanced manufacturing processes
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Socio-inspired optimization methods for advanced manufacturing processesby Apoorva Shastri, Aniket Nargundkar, Anand J. Kulkarni.
作者:
Shastri, Apoorva.
其他作者:
Nargundkar, Aniket.
出版者:
Singapore :Springer Singapore :2021.
面頁冊數:
x, 128 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Manufacturing processesMathematical models.
電子資源:
https://doi.org/10.1007/978-981-15-7797-0
ISBN:
9789811577970$q(electronic bk.)
Socio-inspired optimization methods for advanced manufacturing processes
Shastri, Apoorva.
Socio-inspired optimization methods for advanced manufacturing processes
[electronic resource] /by Apoorva Shastri, Aniket Nargundkar, Anand J. Kulkarni. - Singapore :Springer Singapore :2021. - x, 128 p. :ill., digital ;24 cm. - Springer series in advanced manufacturing,1860-5168. - Springer series in advanced manufacturing..
Introduction -- A Brief Review of Socio-Inspired Metaheuristics -- Multi Cohort Intelligence Algorithm -- Optimization of Electric Discharge Machining (EDM) -- Optimization of Abrasive Water Jet Machining (AWJM) -- Optimization of Micro Milling Process -- Optimization of Micro Drilling Process -- Optimization of Cutting Forces in Micro Drilling of CFRP Composites for Aerospace Applications -- Optimization of Micro Turning Process -- Optimization of Machining Process Parameters of Titanium Alloy Under (MQL) Environment.
This book discusses comprehensively the advanced manufacturing processes, including illustrative examples of the processes, mathematical modeling, and the need to optimize associated parameter problems. In addition, it describes in detail the cohort intelligence methodology and its variants along with illustrations, to help readers gain a better understanding of the framework. The theoretical and statistical rigor is validated by comparing the solutions with evolutionary algorithms, simulation annealing, response surface methodology, the firefly algorithm, and experimental work. Lastly, the book critically reviews several socio-inspired optimization methods.
ISBN: 9789811577970$q(electronic bk.)
Standard No.: 10.1007/978-981-15-7797-0doiSubjects--Topical Terms:
225386
Manufacturing processes
--Mathematical models.
LC Class. No.: TS183 / .S43 2021
Dewey Class. No.: 670.15118
Socio-inspired optimization methods for advanced manufacturing processes
LDR
:02287nmm a2200337 a 4500
001
594928
003
DE-He213
005
20200811125709.0
006
m d
007
cr nn 008maaau
008
211005s2021 si s 0 eng d
020
$a
9789811577970$q(electronic bk.)
020
$a
9789811577963$q(paper)
024
7
$a
10.1007/978-981-15-7797-0
$2
doi
035
$a
978-981-15-7797-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TS183
$b
.S43 2021
072
7
$a
TGP
$2
bicssc
072
7
$a
TEC020000
$2
bisacsh
072
7
$a
TGP
$2
thema
082
0 4
$a
670.15118
$2
23
090
$a
TS183
$b
.S532 2021
100
1
$a
Shastri, Apoorva.
$3
887060
245
1 0
$a
Socio-inspired optimization methods for advanced manufacturing processes
$h
[electronic resource] /
$c
by Apoorva Shastri, Aniket Nargundkar, Anand J. Kulkarni.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
x, 128 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer series in advanced manufacturing,
$x
1860-5168
505
0
$a
Introduction -- A Brief Review of Socio-Inspired Metaheuristics -- Multi Cohort Intelligence Algorithm -- Optimization of Electric Discharge Machining (EDM) -- Optimization of Abrasive Water Jet Machining (AWJM) -- Optimization of Micro Milling Process -- Optimization of Micro Drilling Process -- Optimization of Cutting Forces in Micro Drilling of CFRP Composites for Aerospace Applications -- Optimization of Micro Turning Process -- Optimization of Machining Process Parameters of Titanium Alloy Under (MQL) Environment.
520
$a
This book discusses comprehensively the advanced manufacturing processes, including illustrative examples of the processes, mathematical modeling, and the need to optimize associated parameter problems. In addition, it describes in detail the cohort intelligence methodology and its variants along with illustrations, to help readers gain a better understanding of the framework. The theoretical and statistical rigor is validated by comparing the solutions with evolutionary algorithms, simulation annealing, response surface methodology, the firefly algorithm, and experimental work. Lastly, the book critically reviews several socio-inspired optimization methods.
650
0
$a
Manufacturing processes
$x
Mathematical models.
$3
225386
650
0
$a
Manufacturing processes
$x
Computer simulation.
$3
203553
650
1 4
$a
Manufacturing, Machines, Tools, Processes.
$3
833130
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Optimization.
$3
274084
700
1
$a
Nargundkar, Aniket.
$3
887061
700
1
$a
Kulkarni, Anand J.
$3
799760
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Springer series in advanced manufacturing.
$3
558114
856
4 0
$u
https://doi.org/10.1007/978-981-15-7797-0
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000195073
電子館藏
1圖書
電子書
EB TS183 .S532 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-15-7797-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入