語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lessons in enumerative combinatorics
~
Egecioglu, Omer.
Lessons in enumerative combinatorics
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Lessons in enumerative combinatoricsby Omer Egecioglu, Adriano M. Garsia.
作者:
Egecioglu, Omer.
其他作者:
Garsia, Adriano M.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xvi, 479 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Combinatorial analysis.
電子資源:
https://doi.org/10.1007/978-3-030-71250-1
ISBN:
9783030712501$q(electronic bk.)
Lessons in enumerative combinatorics
Egecioglu, Omer.
Lessons in enumerative combinatorics
[electronic resource] /by Omer Egecioglu, Adriano M. Garsia. - Cham :Springer International Publishing :2021. - xvi, 479 p. :ill., digital ;24 cm. - Graduate texts in mathematics,2900072-5285 ;. - Graduate texts in mathematics ;129..
1. Basic Combinatorial Structures -- 2. Partitions and Generating Functions -- 3. Planar Trees and the Lagrange Inversion Formula -- 4. Cayley Trees -- 5. The Cayley-Hamilton Theorem -- 6. Exponential Structures and Polynomial Operators -- 7. The Inclusion-Exclusion Principle -- 8. Graphs, Chromatic Polynomials and Acyclic Orientations -- 9. Matching and Distinct Representatives.
This textbook introduces enumerative combinatorics through the framework of formal languages and bijections. By starting with elementary operations on words and languages, the authors paint an insightful, unified picture for readers entering the field. Numerous concrete examples and illustrative metaphors motivate the theory throughout, while the overall approach illuminates the important connections between discrete mathematics and theoretical computer science. Beginning with the basics of formal languages, the first chapter quickly establishes a common setting for modeling and counting classical combinatorial objects and constructing bijective proofs. From here, topics are modular and offer substantial flexibility when designing a course. Chapters on generating functions and partitions build further fundamental tools for enumeration and include applications such as a combinatorial proof of the Lagrange inversion formula. Connections to linear algebra emerge in chapters studying Cayley trees, determinantal formulas, and the combinatorics that lie behind the classical Cayley-Hamilton theorem. The remaining chapters range across the Inclusion-Exclusion Principle, graph theory and coloring, exponential structures, matching and distinct representatives, with each topic opening many doors to further study. Generous exercise sets complement all chapters, and miscellaneous sections explore additional applications. Lessons in Enumerative Combinatorics captures the authors' distinctive style and flair for introducing newcomers to combinatorics. The conversational yet rigorous presentation suits students in mathematics and computer science at the graduate, or advanced undergraduate level. Knowledge of single-variable calculus and the basics of discrete mathematics is assumed; familiarity with linear algebra will enhance the study of certain chapters.
ISBN: 9783030712501$q(electronic bk.)
Standard No.: 10.1007/978-3-030-71250-1doiSubjects--Topical Terms:
182280
Combinatorial analysis.
LC Class. No.: QA164 / .E3174 2021
Dewey Class. No.: 511.6
Lessons in enumerative combinatorics
LDR
:03300nmm a2200337 a 4500
001
598777
003
DE-He213
005
20210512231836.0
006
m d
007
cr nn 008maaau
008
211025s2021 sz s 0 eng d
020
$a
9783030712501$q(electronic bk.)
020
$a
9783030712495$q(paper)
024
7
$a
10.1007/978-3-030-71250-1
$2
doi
035
$a
978-3-030-71250-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA164
$b
.E3174 2021
072
7
$a
PBD
$2
bicssc
072
7
$a
MAT008000
$2
bisacsh
072
7
$a
PBD
$2
thema
082
0 4
$a
511.6
$2
23
090
$a
QA164
$b
.E29 2021
100
1
$a
Egecioglu, Omer.
$3
877658
245
1 0
$a
Lessons in enumerative combinatorics
$h
[electronic resource] /
$c
by Omer Egecioglu, Adriano M. Garsia.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xvi, 479 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Graduate texts in mathematics,
$x
0072-5285 ;
$v
290
505
0
$a
1. Basic Combinatorial Structures -- 2. Partitions and Generating Functions -- 3. Planar Trees and the Lagrange Inversion Formula -- 4. Cayley Trees -- 5. The Cayley-Hamilton Theorem -- 6. Exponential Structures and Polynomial Operators -- 7. The Inclusion-Exclusion Principle -- 8. Graphs, Chromatic Polynomials and Acyclic Orientations -- 9. Matching and Distinct Representatives.
520
$a
This textbook introduces enumerative combinatorics through the framework of formal languages and bijections. By starting with elementary operations on words and languages, the authors paint an insightful, unified picture for readers entering the field. Numerous concrete examples and illustrative metaphors motivate the theory throughout, while the overall approach illuminates the important connections between discrete mathematics and theoretical computer science. Beginning with the basics of formal languages, the first chapter quickly establishes a common setting for modeling and counting classical combinatorial objects and constructing bijective proofs. From here, topics are modular and offer substantial flexibility when designing a course. Chapters on generating functions and partitions build further fundamental tools for enumeration and include applications such as a combinatorial proof of the Lagrange inversion formula. Connections to linear algebra emerge in chapters studying Cayley trees, determinantal formulas, and the combinatorics that lie behind the classical Cayley-Hamilton theorem. The remaining chapters range across the Inclusion-Exclusion Principle, graph theory and coloring, exponential structures, matching and distinct representatives, with each topic opening many doors to further study. Generous exercise sets complement all chapters, and miscellaneous sections explore additional applications. Lessons in Enumerative Combinatorics captures the authors' distinctive style and flair for introducing newcomers to combinatorics. The conversational yet rigorous presentation suits students in mathematics and computer science at the graduate, or advanced undergraduate level. Knowledge of single-variable calculus and the basics of discrete mathematics is assumed; familiarity with linear algebra will enhance the study of certain chapters.
650
0
$a
Combinatorial analysis.
$3
182280
650
1 4
$a
Discrete Mathematics.
$3
524738
650
2 4
$a
Mathematical Logic and Foundations.
$3
274479
650
2 4
$a
Mathematical Logic and Formal Languages.
$3
275383
700
1
$a
Garsia, Adriano M.
$3
877657
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Graduate texts in mathematics ;
$v
129.
$3
436082
856
4 0
$u
https://doi.org/10.1007/978-3-030-71250-1
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000197460
電子館藏
1圖書
電子書
EB QA164 .E29 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-71250-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入