語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applications of artificial intellige...
~
Armaghani, Danial Jahe.
Applications of artificial intelligence in tunnelling and underground space technology
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Applications of artificial intelligence in tunnelling and underground space technologyby Danial Jahed Armaghani, Aydin Azizi.
作者:
Armaghani, Danial Jahe.
其他作者:
Azizi, Aydin.
出版者:
Singapore :Springer Singapore :2021.
面頁冊數:
ix, 70 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
TunnelingEquipment and supplies.
電子資源:
https://doi.org/10.1007/978-981-16-1034-9
ISBN:
9789811610349$q(electronic bk.)
Applications of artificial intelligence in tunnelling and underground space technology
Armaghani, Danial Jahe.
Applications of artificial intelligence in tunnelling and underground space technology
[electronic resource] /by Danial Jahed Armaghani, Aydin Azizi. - Singapore :Springer Singapore :2021. - ix, 70 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology,2191-530X. - SpringerBriefs in applied sciences and technology..
Chapter 1. An Overview of Field Classifications to Evaluate Tunnel Boring Machine Performance -- Chapter 2. Empirical, Statistical and Intelligent Techniques for TBM Performance Prediction. Chapter 3. Developing Statistical Models for Solving Tunnel Boring Machine Performance Problem -- Chapter 4. A Comparative Study of Artificial Intelligence Techniques to Estimate TBM Performance in Various Weathering Zones.
This book covers the tunnel boring machine (TBM) performance classifications, empirical models, statistical and intelligent-based techniques which have been applied and introduced by the researchers in this field. In addition, a critical review of the available TBM performance predictive models will be discussed in details. Then, this book introduces several predictive models i.e., statistical and intelligent techniques which are applicable, powerful and easy to implement, in estimating TBM performance parameters. The introduced models are accurate enough and they can be used for prediction of TBM performance in practice before designing TBMs.
ISBN: 9789811610349$q(electronic bk.)
Standard No.: 10.1007/978-981-16-1034-9doiSubjects--Topical Terms:
317162
Tunneling
--Equipment and supplies.
LC Class. No.: TA815 / .A763 2021
Dewey Class. No.: 624.193
Applications of artificial intelligence in tunnelling and underground space technology
LDR
:02192nmm a2200349 a 4500
001
599488
003
DE-He213
005
20210712113500.0
006
m d
007
cr nn 008maaau
008
211027s2021 si s 0 eng d
020
$a
9789811610349$q(electronic bk.)
020
$a
9789811610332$q(paper)
024
7
$a
10.1007/978-981-16-1034-9
$2
doi
035
$a
978-981-16-1034-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA815
$b
.A763 2021
072
7
$a
RBP
$2
bicssc
072
7
$a
SCI042000
$2
bisacsh
072
7
$a
RBP
$2
thema
072
7
$a
RBGK
$2
thema
082
0 4
$a
624.193
$2
23
090
$a
TA815
$b
.A727 2021
100
1
$a
Armaghani, Danial Jahe.
$3
893666
245
1 0
$a
Applications of artificial intelligence in tunnelling and underground space technology
$h
[electronic resource] /
$c
by Danial Jahed Armaghani, Aydin Azizi.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
ix, 70 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology,
$x
2191-530X
505
0
$a
Chapter 1. An Overview of Field Classifications to Evaluate Tunnel Boring Machine Performance -- Chapter 2. Empirical, Statistical and Intelligent Techniques for TBM Performance Prediction. Chapter 3. Developing Statistical Models for Solving Tunnel Boring Machine Performance Problem -- Chapter 4. A Comparative Study of Artificial Intelligence Techniques to Estimate TBM Performance in Various Weathering Zones.
520
$a
This book covers the tunnel boring machine (TBM) performance classifications, empirical models, statistical and intelligent-based techniques which have been applied and introduced by the researchers in this field. In addition, a critical review of the available TBM performance predictive models will be discussed in details. Then, this book introduces several predictive models i.e., statistical and intelligent techniques which are applicable, powerful and easy to implement, in estimating TBM performance parameters. The introduced models are accurate enough and they can be used for prediction of TBM performance in practice before designing TBMs.
650
0
$a
Tunneling
$x
Equipment and supplies.
$3
317162
650
0
$a
Artificial intelligence
$x
Engineering applications.
$3
559245
650
1 4
$a
Geoengineering, Foundations, Hydraulics.
$3
338647
650
2 4
$a
Theoretical, Mathematical and Computational Physics.
$3
376743
650
2 4
$a
Geotechnical Engineering & Applied Earth Sciences.
$3
542182
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
274061
650
2 4
$a
Applications of Mathematics.
$3
273744
650
2 4
$a
Statistical Theory and Methods.
$3
274054
700
1
$a
Azizi, Aydin.
$3
832636
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in applied sciences and technology.
$3
557662
856
4 0
$u
https://doi.org/10.1007/978-981-16-1034-9
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000198112
電子館藏
1圖書
電子書
EB TA815 .A727 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-16-1034-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入