語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Financial data resampling for machin...
~
Borges, Tome Almeida.
Financial data resampling for machine learning based tradingapplication to cryptocurrency markets /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Financial data resampling for machine learning based tradingby Tome Almeida Borges, Rui Neves.
其他題名:
application to cryptocurrency markets /
作者:
Borges, Tome Almeida.
其他作者:
Neves, Rui.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xv, 93 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
CryptocurrenciesStatistical methods.
電子資源:
https://doi.org/10.1007/978-3-030-68379-5
ISBN:
9783030683795$q(electronic bk.)
Financial data resampling for machine learning based tradingapplication to cryptocurrency markets /
Borges, Tome Almeida.
Financial data resampling for machine learning based trading
application to cryptocurrency markets /[electronic resource] :by Tome Almeida Borges, Rui Neves. - Cham :Springer International Publishing :2021. - xv, 93 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology, Computational intelligence. - SpringerBriefs in applied sciences and technology.Computational intelligence..
This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.
ISBN: 9783030683795$q(electronic bk.)
Standard No.: 10.1007/978-3-030-68379-5doiSubjects--Topical Terms:
895268
Cryptocurrencies
--Statistical methods.
LC Class. No.: HG1710.3
Dewey Class. No.: 332.63
Financial data resampling for machine learning based tradingapplication to cryptocurrency markets /
LDR
:01853nmm a2200325 a 4500
001
600639
003
DE-He213
005
20210616152705.0
006
m d
007
cr nn 008maaau
008
211104s2021 sz s 0 eng d
020
$a
9783030683795$q(electronic bk.)
020
$a
9783030683788$q(paper)
024
7
$a
10.1007/978-3-030-68379-5
$2
doi
035
$a
978-3-030-68379-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HG1710.3
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
332.63
$2
23
090
$a
HG1710.3
$b
.B732 2021
100
1
$a
Borges, Tome Almeida.
$3
895267
245
1 0
$a
Financial data resampling for machine learning based trading
$h
[electronic resource] :
$b
application to cryptocurrency markets /
$c
by Tome Almeida Borges, Rui Neves.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xv, 93 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology, Computational intelligence
520
$a
This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.
650
0
$a
Cryptocurrencies
$x
Statistical methods.
$3
895268
650
0
$a
Investments
$x
Statistical methods.
$3
863709
650
0
$a
Resampling (Statistics)
$3
185434
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
274020
700
1
$a
Neves, Rui.
$3
806504
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in applied sciences and technology.
$p
Computational intelligence.
$3
674590
856
4 0
$u
https://doi.org/10.1007/978-3-030-68379-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000199173
電子館藏
1圖書
電子書
EB HG1710.3 .B732 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-68379-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入