語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Time-dependent problems in imaging a...
~
Kaltenbacher, Barbara.
Time-dependent problems in imaging and parameter identification
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Time-dependent problems in imaging and parameter identificationedited by Barbara Kaltenbacher, Thomas Schuster, Anne Wald.
其他作者:
Kaltenbacher, Barbara.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xiv, 456 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Image processingMathematics.
電子資源:
https://doi.org/10.1007/978-3-030-57784-1
ISBN:
9783030577841$q(electronic bk.)
Time-dependent problems in imaging and parameter identification
Time-dependent problems in imaging and parameter identification
[electronic resource] /edited by Barbara Kaltenbacher, Thomas Schuster, Anne Wald. - Cham :Springer International Publishing :2021. - xiv, 456 p. :ill., digital ;24 cm.
1. Joint phase reconstruction and magnitude segmentation from velocity-encoded MRI data -- 2. Dynamic Inverse Problems for the Acoustic Wave Equation -- 3. Motion compensation strategies in tomography -- 4. Microlocal properties of dynamic Fourier integral operators -- 5. The tangential cone condition for some coefficient identification model problems in parabolic PDEs -- 6. Sequential subspace optimization for recovering stored energy functions in hyperelastic materials from time-dependent data -- 7. Joint Motion Estimation and Source Identification using Convective Regularisation with an Application to the Analysis of Laser Nanoablations -- 8. Quantitative OCT reconstructions for dispersive media -- 9. Review of Image Similarity Measures for Joint Image Reconstruction from Multiple Measurements -- 10. Holmgren-John Unique Continuation Theorem for Viscoelastic Systems -- 11. Tomographic Reconstruction for Single Conjugate Adaptive Optics -- 12. Inverse Problems of Single Molecule Localization Microscopy -- 13. Parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging -- 14. An inverse source problem related to acoustic nonlinearity parameter imaging.
Inverse problems such as imaging or parameter identification deal with the recovery of unknown quantities from indirect observations, connected via a model describing the underlying context. While traditionally inverse problems are formulated and investigated in a static setting, we observe a significant increase of interest in time-dependence in a growing number of important applications over the last few years. Here, time-dependence affects a) the unknown function to be recovered and / or b) the observed data and / or c) the underlying process. Challenging applications in the field of imaging and parameter identification are techniques such as photoacoustic tomography, elastography, dynamic computerized or emission tomography, dynamic magnetic resonance imaging, super-resolution in image sequences and videos, health monitoring of elastic structures, optical flow problems or magnetic particle imaging to name only a few. Such problems demand for innovation concerning their mathematical description and analysis as well as computational approaches for their solution.
ISBN: 9783030577841$q(electronic bk.)
Standard No.: 10.1007/978-3-030-57784-1doiSubjects--Topical Terms:
184606
Image processing
--Mathematics.
LC Class. No.: TA1637.5 / .T56 2021
Dewey Class. No.: 621.367
Time-dependent problems in imaging and parameter identification
LDR
:03352nmm a2200337 a 4500
001
600640
003
DE-He213
005
20210616134831.0
006
m d
007
cr nn 008maaau
008
211104s2021 sz s 0 eng d
020
$a
9783030577841$q(electronic bk.)
020
$a
9783030577834$q(paper)
024
7
$a
10.1007/978-3-030-57784-1
$2
doi
035
$a
978-3-030-57784-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA1637.5
$b
.T56 2021
072
7
$a
UYAM
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UYAM
$2
thema
072
7
$a
UFM
$2
thema
082
0 4
$a
621.367
$2
23
090
$a
TA1637.5
$b
.T583 2021
245
0 0
$a
Time-dependent problems in imaging and parameter identification
$h
[electronic resource] /
$c
edited by Barbara Kaltenbacher, Thomas Schuster, Anne Wald.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiv, 456 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. Joint phase reconstruction and magnitude segmentation from velocity-encoded MRI data -- 2. Dynamic Inverse Problems for the Acoustic Wave Equation -- 3. Motion compensation strategies in tomography -- 4. Microlocal properties of dynamic Fourier integral operators -- 5. The tangential cone condition for some coefficient identification model problems in parabolic PDEs -- 6. Sequential subspace optimization for recovering stored energy functions in hyperelastic materials from time-dependent data -- 7. Joint Motion Estimation and Source Identification using Convective Regularisation with an Application to the Analysis of Laser Nanoablations -- 8. Quantitative OCT reconstructions for dispersive media -- 9. Review of Image Similarity Measures for Joint Image Reconstruction from Multiple Measurements -- 10. Holmgren-John Unique Continuation Theorem for Viscoelastic Systems -- 11. Tomographic Reconstruction for Single Conjugate Adaptive Optics -- 12. Inverse Problems of Single Molecule Localization Microscopy -- 13. Parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging -- 14. An inverse source problem related to acoustic nonlinearity parameter imaging.
520
$a
Inverse problems such as imaging or parameter identification deal with the recovery of unknown quantities from indirect observations, connected via a model describing the underlying context. While traditionally inverse problems are formulated and investigated in a static setting, we observe a significant increase of interest in time-dependence in a growing number of important applications over the last few years. Here, time-dependence affects a) the unknown function to be recovered and / or b) the observed data and / or c) the underlying process. Challenging applications in the field of imaging and parameter identification are techniques such as photoacoustic tomography, elastography, dynamic computerized or emission tomography, dynamic magnetic resonance imaging, super-resolution in image sequences and videos, health monitoring of elastic structures, optical flow problems or magnetic particle imaging to name only a few. Such problems demand for innovation concerning their mathematical description and analysis as well as computational approaches for their solution.
650
0
$a
Image processing
$x
Mathematics.
$3
184606
650
0
$a
Inverse problems (Differential equations)
$3
189581
650
1 4
$a
Math Applications in Computer Science.
$3
273991
650
2 4
$a
Image Processing and Computer Vision.
$3
274051
650
2 4
$a
Numerical Analysis.
$3
275681
700
1
$a
Kaltenbacher, Barbara.
$3
819217
700
1
$a
Schuster, Thomas.
$3
895269
700
1
$a
Wald, Anne.
$3
895270
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-57784-1
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000199174
電子館藏
1圖書
電子書
EB TA1637.5 .T583 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-57784-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入