語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data-driven evolutionary optimizatio...
~
Jin, Yaochu.
Data-driven evolutionary optimizationintegrating evolutionary computation, machine learning and data science /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Data-driven evolutionary optimizationby Yaochu Jin, Handing Wang, Chaoli Sun.
其他題名:
integrating evolutionary computation, machine learning and data science /
作者:
Jin, Yaochu.
其他作者:
Wang, Handing.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xxv, 393 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Mathematical optimization.
電子資源:
https://doi.org/10.1007/978-3-030-74640-7
ISBN:
9783030746407$q(electronic bk.)
Data-driven evolutionary optimizationintegrating evolutionary computation, machine learning and data science /
Jin, Yaochu.
Data-driven evolutionary optimization
integrating evolutionary computation, machine learning and data science /[electronic resource] :by Yaochu Jin, Handing Wang, Chaoli Sun. - Cham :Springer International Publishing :2021. - xxv, 393 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.9751860-949X ;. - Studies in computational intelligence ;v. 216..
Introduction to Optimization -- Classical Optimization Algorithms -- Evolutionary and Swarm Optimization -- Introduction to Machine Learning -- Data-Driven Surrogate-Assisted Evolutionary Optimization -- Multi-Surrogate-Assisted Single-Objective Optimization -- Surrogate-Assisted Multi-Objective Evolutionary Optimization.
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
ISBN: 9783030746407$q(electronic bk.)
Standard No.: 10.1007/978-3-030-74640-7doiSubjects--Topical Terms:
183292
Mathematical optimization.
LC Class. No.: QA402.5 / .J569 2021
Dewey Class. No.: 519.6
Data-driven evolutionary optimizationintegrating evolutionary computation, machine learning and data science /
LDR
:02492nmm a2200349 a 4500
001
602411
003
DE-He213
005
20210703131353.0
006
m d
007
cr nn 008maaau
008
211112s2021 sz s 0 eng d
020
$a
9783030746407$q(electronic bk.)
020
$a
9783030746391$q(paper)
024
7
$a
10.1007/978-3-030-74640-7
$2
doi
035
$a
978-3-030-74640-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.J569 2021
072
7
$a
UN
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UN
$2
thema
072
7
$a
TB
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.J61 2021
100
1
$a
Jin, Yaochu.
$3
260756
245
1 0
$a
Data-driven evolutionary optimization
$h
[electronic resource] :
$b
integrating evolutionary computation, machine learning and data science /
$c
by Yaochu Jin, Handing Wang, Chaoli Sun.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xxv, 393 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.975
505
0
$a
Introduction to Optimization -- Classical Optimization Algorithms -- Evolutionary and Swarm Optimization -- Introduction to Machine Learning -- Data-Driven Surrogate-Assisted Evolutionary Optimization -- Multi-Surrogate-Assisted Single-Objective Optimization -- Surrogate-Assisted Multi-Objective Evolutionary Optimization.
520
$a
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available. This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
650
0
$a
Mathematical optimization.
$3
183292
650
0
$a
Evolutionary computation.
$3
231709
650
0
$a
Metaheuristics.
$3
757062
650
1 4
$a
Data Engineering.
$3
839346
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence.
$3
212515
700
1
$a
Wang, Handing.
$3
898083
700
1
$a
Sun, Chaoli.
$3
898084
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
https://doi.org/10.1007/978-3-030-74640-7
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000200061
電子館藏
1圖書
電子書
EB QA402.5 .J61 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-74640-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入