語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Integration challenges for analytics...
~
Azevedo, Ana.
Integration challenges for analytics, business intelligence, and data mining
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Integration challenges for analytics, business intelligence, and data miningAna Azevedo and Manuel Filipe Santos, editors.
其他作者:
Azevedo, Ana.
出版者:
Hershey, Pennsylvania :IGI Global,2020.
面頁冊數:
1 online resource (xix, 250 p.)
標題:
Business enterprisesData processing.
電子資源:
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-5781-5
ISBN:
9781799857839 (ebk.)
Integration challenges for analytics, business intelligence, and data mining
Integration challenges for analytics, business intelligence, and data mining
[electronic resource] /Ana Azevedo and Manuel Filipe Santos, editors. - Hershey, Pennsylvania :IGI Global,2020. - 1 online resource (xix, 250 p.)
Includes bibliographical references and index.
Section 1. Background and literature review. Chapter 1. Data mining and business intelligence: a bibliometric analysis ; Chapter 2. Integration of data mining and business intelligence in big data analytics: a research agenda on scholarly publications ; Chapter 3. From business intelligence to big data: the power of analytics -- Section 2. Big data issues. Chapter 4. Big data quality for data mining in business intelligence applications: current state and research directions ; Chapter 5. Enterprise data lake management in business intelligence and analytics: challenges and research gaps in analytics practices and integration -- Section 3. Modelling issues. Chapter 6. Modelling in support of decision making in business intelligence ; Chapter 7. Causal feature selection ; Chapter 8. K-nearest neighbors algorithm (KNN): an approach to detect illicit transaction in the bitcoin network -- Section 4. Software and security. Chapter 9. A framework to evaluate big data fabric tools ; Chapter 10. A novel approach using steganography and cryptography in business intelligence.
"This book provides insights concerning the integration of data mining in business intelligence and analytics systems, increasing the understanding of using data mining in the context of business intelligence and analytics"--
ISBN: 9781799857839 (ebk.)Subjects--Topical Terms:
246238
Business enterprises
--Data processing.
LC Class. No.: HF5548.2 / .I58 2020
Dewey Class. No.: 658.4/72
Integration challenges for analytics, business intelligence, and data mining
LDR
:02256nmm a2200265 a 4500
001
603645
003
IGIG
005
20211027160441.0
006
m o d
007
cr cn
008
211118s2020 pau fob 001 0 eng d
020
$a
9781799857839 (ebk.)
020
$a
9781799857815 (hbk.)
020
$a
9781799857822 (pbk.)
035
$a
(OCoLC)1224336025
035
$a
1101012310
040
$a
CaBNVSL
$b
eng
$c
CaBNVSL
$d
CaBNVSL
050
0 0
$a
HF5548.2
$b
.I58 2020
082
0 0
$a
658.4/72
$2
23
245
0 0
$a
Integration challenges for analytics, business intelligence, and data mining
$h
[electronic resource] /
$c
Ana Azevedo and Manuel Filipe Santos, editors.
260
$a
Hershey, Pennsylvania :
$b
IGI Global,
$c
2020.
300
$a
1 online resource (xix, 250 p.)
504
$a
Includes bibliographical references and index.
505
0
$a
Section 1. Background and literature review. Chapter 1. Data mining and business intelligence: a bibliometric analysis ; Chapter 2. Integration of data mining and business intelligence in big data analytics: a research agenda on scholarly publications ; Chapter 3. From business intelligence to big data: the power of analytics -- Section 2. Big data issues. Chapter 4. Big data quality for data mining in business intelligence applications: current state and research directions ; Chapter 5. Enterprise data lake management in business intelligence and analytics: challenges and research gaps in analytics practices and integration -- Section 3. Modelling issues. Chapter 6. Modelling in support of decision making in business intelligence ; Chapter 7. Causal feature selection ; Chapter 8. K-nearest neighbors algorithm (KNN): an approach to detect illicit transaction in the bitcoin network -- Section 4. Software and security. Chapter 9. A framework to evaluate big data fabric tools ; Chapter 10. A novel approach using steganography and cryptography in business intelligence.
520
3
$a
"This book provides insights concerning the integration of data mining in business intelligence and analytics systems, increasing the understanding of using data mining in the context of business intelligence and analytics"--
$c
Provided by publisher.
650
0
$a
Business enterprises
$x
Data processing.
$3
246238
650
0
$a
Business intelligence.
$3
202057
650
0
$a
Data mining.
$3
184440
700
1
$a
Azevedo, Ana.
$3
900253
700
1
$a
Santos, Manuel Filipe.
$3
900254
856
4 0
$u
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-5781-5
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000202376
電子館藏
1圖書
電子書
EB HF5548.2 .I58 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-5781-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入