語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Polyfold and Fredholm theory
~
Hofer, Helmut.
Polyfold and Fredholm theory
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Polyfold and Fredholm theoryby Helmut Hofer, Krzysztof Wysocki, Eduard Zehnder.
作者:
Hofer, Helmut.
其他作者:
Wysocki, Krzysztof.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xxii, 1001 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Fredholm equations.
電子資源:
https://link.springer.com/openurl.asp?genre=book&isbn=978-3-030-78007-4
ISBN:
9783030780074$q(electronic bk.)
Polyfold and Fredholm theory
Hofer, Helmut.
Polyfold and Fredholm theory
[electronic resource] /by Helmut Hofer, Krzysztof Wysocki, Eduard Zehnder. - Cham :Springer International Publishing :2021. - xxii, 1001 p. :ill., digital ;24 cm. - Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge / A series of modern surveys in mathematics,v.720071-1136 ;. - Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge / A series of modern surveys in mathematics ;v.72..
Part I Basic Theory in M-Polyfolds -- 1 Sc-Calculus -- 2 Retracts -- 3 Basic Sc-Fredholm Theory -- 4 Manifolds and Strong Retracts -- 5 Fredholm Package for M-Polyfolds -- 6 Orientations -- Part II Ep-Groupoids -- 7 Ep-Groupoids -- 8 Bundles and Covering Functors -- 9 Branched Ep+-Subgroupoids -- 10 Equivalences and Localization -- 11 Geometry up to Equivalences -- Part III Fredholm Theory in Ep-Groupoids -- 12 Sc-Fredholm Sections -- 13 Sc+-Multisections -- 14 Extensions of Sc+-Multisections -- 15 Transversality and Invariants -- 16 Polyfolds -- Part IV Fredholm Theory in Groupoidal Categories -- 17 Polyfold Theory for Categories -- 18 Fredholm Theory in Polyfolds -- 19 General Constructions -- A Construction Cheatsheet -- References -- Index.
This book pioneers a nonlinear Fredholm theory in a general class of spaces called polyfolds. The theory generalizes certain aspects of nonlinear analysis and differential geometry, and combines them with a pinch of category theory to incorporate local symmetries. On the differential geometrical side, the book introduces a large class of 'smooth' spaces and bundles which can have locally varying dimensions (finite or infinite-dimensional) These bundles come with an important class of sections, which display properties reminiscent of classical nonlinear Fredholm theory and allow for implicit function theorems. Within this nonlinear analysis framework, a versatile transversality and perturbation theory is developed to also cover equivariant settings. The theory presented in this book was initiated by the authors between 2007-2010, motivated by nonlinear moduli problems in symplectic geometry. Such problems are usually described locally as nonlinear elliptic systems, and they have to be studied up to a notion of isomorphism. This introduces symmetries, since such a system can be isomorphic to itself in different ways. Bubbling-off phenomena are common and have to be completely understood to produce algebraic invariants. This requires a transversality theory for bubbling-off phenomena in the presence of symmetries. Very often, even in concrete applications, geometric perturbations are not general enough to achieve transversality, and abstract perturbations have to be considered. The theory is already being successfully applied to its intended applications in symplectic geometry, and should find applications to many other areas where partial differential equations, geometry and functional analysis meet. Written by its originators, Polyfold and Fredholm Theory is an authoritative and comprehensive treatise of polyfold theory. It will prove invaluable for researchers studying nonlinear elliptic problems arising in geometric contexts.
ISBN: 9783030780074$q(electronic bk.)
Standard No.: 10.1007/978-3-030-78007-4doiSubjects--Topical Terms:
347586
Fredholm equations.
LC Class. No.: QA431
Dewey Class. No.: 515.45
Polyfold and Fredholm theory
LDR
:03862nmm a2200337 a 4500
001
605525
003
DE-He213
005
20210721183130.0
006
m d
007
cr nn 008maaau
008
211201s2021 sz s 0 eng d
020
$a
9783030780074$q(electronic bk.)
020
$a
9783030780067$q(paper)
024
7
$a
10.1007/978-3-030-78007-4
$2
doi
035
$a
978-3-030-78007-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA431
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
515.45
$2
23
090
$a
QA431
$b
.H697 2021
100
1
$a
Hofer, Helmut.
$3
836560
245
1 0
$a
Polyfold and Fredholm theory
$h
[electronic resource] /
$c
by Helmut Hofer, Krzysztof Wysocki, Eduard Zehnder.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xxii, 1001 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge / A series of modern surveys in mathematics,
$x
0071-1136 ;
$v
v.72
505
0
$a
Part I Basic Theory in M-Polyfolds -- 1 Sc-Calculus -- 2 Retracts -- 3 Basic Sc-Fredholm Theory -- 4 Manifolds and Strong Retracts -- 5 Fredholm Package for M-Polyfolds -- 6 Orientations -- Part II Ep-Groupoids -- 7 Ep-Groupoids -- 8 Bundles and Covering Functors -- 9 Branched Ep+-Subgroupoids -- 10 Equivalences and Localization -- 11 Geometry up to Equivalences -- Part III Fredholm Theory in Ep-Groupoids -- 12 Sc-Fredholm Sections -- 13 Sc+-Multisections -- 14 Extensions of Sc+-Multisections -- 15 Transversality and Invariants -- 16 Polyfolds -- Part IV Fredholm Theory in Groupoidal Categories -- 17 Polyfold Theory for Categories -- 18 Fredholm Theory in Polyfolds -- 19 General Constructions -- A Construction Cheatsheet -- References -- Index.
520
$a
This book pioneers a nonlinear Fredholm theory in a general class of spaces called polyfolds. The theory generalizes certain aspects of nonlinear analysis and differential geometry, and combines them with a pinch of category theory to incorporate local symmetries. On the differential geometrical side, the book introduces a large class of 'smooth' spaces and bundles which can have locally varying dimensions (finite or infinite-dimensional) These bundles come with an important class of sections, which display properties reminiscent of classical nonlinear Fredholm theory and allow for implicit function theorems. Within this nonlinear analysis framework, a versatile transversality and perturbation theory is developed to also cover equivariant settings. The theory presented in this book was initiated by the authors between 2007-2010, motivated by nonlinear moduli problems in symplectic geometry. Such problems are usually described locally as nonlinear elliptic systems, and they have to be studied up to a notion of isomorphism. This introduces symmetries, since such a system can be isomorphic to itself in different ways. Bubbling-off phenomena are common and have to be completely understood to produce algebraic invariants. This requires a transversality theory for bubbling-off phenomena in the presence of symmetries. Very often, even in concrete applications, geometric perturbations are not general enough to achieve transversality, and abstract perturbations have to be considered. The theory is already being successfully applied to its intended applications in symplectic geometry, and should find applications to many other areas where partial differential equations, geometry and functional analysis meet. Written by its originators, Polyfold and Fredholm Theory is an authoritative and comprehensive treatise of polyfold theory. It will prove invaluable for researchers studying nonlinear elliptic problems arising in geometric contexts.
650
0
$a
Fredholm equations.
$3
347586
650
1 4
$a
Global Analysis and Analysis on Manifolds.
$3
273786
650
2 4
$a
Functional Analysis.
$3
274845
650
2 4
$a
Differential Geometry.
$3
273785
650
2 4
$a
Analysis.
$3
273775
700
1
$a
Wysocki, Krzysztof.
$3
901714
700
1
$a
Zehnder, Eduard.
$3
901715
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge / A series of modern surveys in mathematics ;
$v
v.72.
$3
901716
856
4 0
$u
https://link.springer.com/openurl.asp?genre=book&isbn=978-3-030-78007-4
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000203572
電子館藏
1圖書
電子書
EB QA431 .H697 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://link.springer.com/openurl.asp?genre=book&isbn=978-3-030-78007-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入