語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Brauer-Grothendieck group
~
Colliot-Thelene, Jean-Louis.
The Brauer-Grothendieck group
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Brauer-Grothendieck groupby Jean-Louis Colliot-Thelene, Alexei N. Skorobogatov.
作者:
Colliot-Thelene, Jean-Louis.
其他作者:
Skorobogatov, Alexei N.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xviii, 450 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Grothendieck groups.
電子資源:
https://link.springer.com/openurl.asp?genre=book&isbn=978-3-030-74248-5
ISBN:
9783030742485$q(electronic bk.)
The Brauer-Grothendieck group
Colliot-Thelene, Jean-Louis.
The Brauer-Grothendieck group
[electronic resource] /by Jean-Louis Colliot-Thelene, Alexei N. Skorobogatov. - Cham :Springer International Publishing :2021. - xviii, 450 p. :ill., digital ;24 cm. - Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge / A series of modern surveys in mathematics,v.710071-1136 ;. - Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge / A series of modern surveys in mathematics ;v.72..
1 Galois Cohomology -- 2 Etale Cohomology -- 3 Brauer Groups of Schemes -- 4 Comparison of the Two Brauer Groups, II -- 5 Varieties Over a Field -- 6 Birational Invariance -- 7 Severi-Brauer Varieties and Hypersurfaces -- 8 Singular Schemes and Varieties -- 9 Varieties with a Group Action -- 10 Schemes Over Local Rings and Fields -- 11 Families of Varieties -- 12 Rationality in a Family -- 13 The Brauer-Manin Set and the Formal Lemma -- 14 Are Rational Points Dense in the Brauer-Manin Set? -- 15 The Brauer-Manin Obstruction for Zero-Cycles -- 16 Tate Conjecture, Abelian Varieties and K3 Surfaces -- Bibliography -- Index.
This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer-Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong's proof of Gabber's theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer-Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer-Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.
ISBN: 9783030742485$q(electronic bk.)
Standard No.: 10.1007/978-3-030-74248-5doiSubjects--Topical Terms:
357432
Grothendieck groups.
LC Class. No.: QA174.2 / .C65 2021
Dewey Class. No.: 512.46
The Brauer-Grothendieck group
LDR
:03566nmm a2200337 a 4500
001
605541
003
DE-He213
005
20210730134718.0
006
m d
007
cr nn 008maaau
008
211201s2021 sz s 0 eng d
020
$a
9783030742485$q(electronic bk.)
020
$a
9783030742478$q(paper)
024
7
$a
10.1007/978-3-030-74248-5
$2
doi
035
$a
978-3-030-74248-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA174.2
$b
.C65 2021
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
512.46
$2
23
090
$a
QA174.2
$b
.C713 2021
100
1
$a
Colliot-Thelene, Jean-Louis.
$3
485855
245
1 4
$a
The Brauer-Grothendieck group
$h
[electronic resource] /
$c
by Jean-Louis Colliot-Thelene, Alexei N. Skorobogatov.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xviii, 450 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge / A series of modern surveys in mathematics,
$x
0071-1136 ;
$v
v.71
505
0
$a
1 Galois Cohomology -- 2 Etale Cohomology -- 3 Brauer Groups of Schemes -- 4 Comparison of the Two Brauer Groups, II -- 5 Varieties Over a Field -- 6 Birational Invariance -- 7 Severi-Brauer Varieties and Hypersurfaces -- 8 Singular Schemes and Varieties -- 9 Varieties with a Group Action -- 10 Schemes Over Local Rings and Fields -- 11 Families of Varieties -- 12 Rationality in a Family -- 13 The Brauer-Manin Set and the Formal Lemma -- 14 Are Rational Points Dense in the Brauer-Manin Set? -- 15 The Brauer-Manin Obstruction for Zero-Cycles -- 16 Tate Conjecture, Abelian Varieties and K3 Surfaces -- Bibliography -- Index.
520
$a
This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer-Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong's proof of Gabber's theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer-Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer-Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.
650
0
$a
Grothendieck groups.
$3
357432
650
0
$a
Brauer groups.
$3
357433
650
1 4
$a
Algebraic Geometry.
$3
274807
650
2 4
$a
Number Theory.
$3
274059
650
2 4
$a
Associative Rings and Algebras.
$3
274818
700
1
$a
Skorobogatov, Alexei N.
$3
901739
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge / A series of modern surveys in mathematics ;
$v
v.72.
$3
901716
856
4 0
$u
https://link.springer.com/openurl.asp?genre=book&isbn=978-3-030-74248-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000203588
電子館藏
1圖書
電子書
EB QA174.2 .C713 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://link.springer.com/openurl.asp?genre=book&isbn=978-3-030-74248-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入