語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimization on solution sets of com...
~
SpringerLink (Online service)
Optimization on solution sets of common fixed point problems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optimization on solution sets of common fixed point problemsby Alexander J. Zaslavski.
作者:
Zaslavski, Alexander J.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xi, 434 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Mathematical optimization.
電子資源:
https://doi.org/10.1007/978-3-030-78849-0
ISBN:
9783030788490
Optimization on solution sets of common fixed point problems
Zaslavski, Alexander J.
Optimization on solution sets of common fixed point problems
[electronic resource] /by Alexander J. Zaslavski. - Cham :Springer International Publishing :2021. - xi, 434 p. :ill., digital ;24 cm. - Springer optimization and its applications,v.1781931-6836 ;. - Springer optimization and its applications ;v. 3..
Preface -- Introduction -- Fixed Point Subgradient Algorithm -- Proximal Point Subgradient Algorithm -- Cimmino Subgradient Projection Algorithm -- Iterative Subgradient Projection Algorithm -- Dynamic Strong-Averaging Subgradient Algorithm -- Fixed Point Gradient Projection Algorithm -- Cimmino Gradient Projection Algorithm -- A Class of Nonsmooth Convex Optimization Problems -- Zero-Sum Games with Two Players -- References -- Index.
This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.
ISBN: 9783030788490
Standard No.: 10.1007/978-3-030-78849-0doiSubjects--Topical Terms:
183292
Mathematical optimization.
LC Class. No.: QA402.5 / .Z37 2021
Dewey Class. No.: 519.6
Optimization on solution sets of common fixed point problems
LDR
:02558nmm a2200337 a 4500
001
608144
003
DE-He213
005
20210813121936.0
006
m d
007
cr nn 008maaau
008
220119s2021 sz s 0 eng d
020
$a
9783030788490
$q
(electronic bk.)
020
$a
9783030788483
$q
(paper)
024
7
$a
10.1007/978-3-030-78849-0
$2
doi
035
$a
978-3-030-78849-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.Z37 2021
072
7
$a
PBU
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBU
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.Z38 2021
100
1
$a
Zaslavski, Alexander J.
$3
261260
245
1 0
$a
Optimization on solution sets of common fixed point problems
$h
[electronic resource] /
$c
by Alexander J. Zaslavski.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xi, 434 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer optimization and its applications,
$x
1931-6836 ;
$v
v.178
505
0
$a
Preface -- Introduction -- Fixed Point Subgradient Algorithm -- Proximal Point Subgradient Algorithm -- Cimmino Subgradient Projection Algorithm -- Iterative Subgradient Projection Algorithm -- Dynamic Strong-Averaging Subgradient Algorithm -- Fixed Point Gradient Projection Algorithm -- Cimmino Gradient Projection Algorithm -- A Class of Nonsmooth Convex Optimization Problems -- Zero-Sum Games with Two Players -- References -- Index.
520
$a
This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.
650
0
$a
Mathematical optimization.
$3
183292
650
0
$a
Fixed point theory.
$3
206244
650
1 4
$a
Optimization.
$3
274084
650
2 4
$a
Operations Research, Management Science.
$3
511451
650
2 4
$a
Numerical Analysis.
$3
275681
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Springer optimization and its applications ;
$v
v. 3.
$3
440366
856
4 0
$u
https://doi.org/10.1007/978-3-030-78849-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000205051
電子館藏
1圖書
電子書
EB QA402.5 .Z38 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-78849-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入