語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine Learning in Medical Imaging1...
~
(1998 :)
Machine Learning in Medical Imaging12th International Workshop, MLMI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine Learning in Medical Imagingedited by Chunfeng Lian ... [et al.].
其他題名:
12th International Workshop, MLMI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
其他題名:
MLMI 2021
其他作者:
Lian, Chunfeng.
團體作者:
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xviii, 704 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Machine learningCongresses.
電子資源:
https://doi.org/10.1007/978-3-030-87589-3
ISBN:
9783030875893$q(electronic bk.)
Machine Learning in Medical Imaging12th International Workshop, MLMI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
Machine Learning in Medical Imaging
12th International Workshop, MLMI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /[electronic resource] :MLMI 2021edited by Chunfeng Lian ... [et al.]. - Cham :Springer International Publishing :2021. - xviii, 704 p. :ill., digital ;24 cm. - Lecture notes in computer science,129660302-9743 ;. - Lecture notes in computer science ;4891..
This book constitutes the proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.* The 71 papers presented in this volume were carefully reviewed and selected from 92 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. *The workshop was held virtually.
ISBN: 9783030875893$q(electronic bk.)
Standard No.: 10.1007/978-3-030-87589-3doiSubjects--Topical Terms:
384498
Machine learning
--Congresses.
LC Class. No.: RC78.7.D53 / M56 2021
Dewey Class. No.: 006.6
Machine Learning in Medical Imaging12th International Workshop, MLMI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
LDR
:02238nmm a2200373 a 4500
001
609399
003
DE-He213
005
20210925082248.0
006
m d
007
cr nn 008maaau
008
220222s2021 sz s 0 eng d
020
$a
9783030875893$q(electronic bk.)
020
$a
9783030875886$q(paper)
024
7
$a
10.1007/978-3-030-87589-3
$2
doi
035
$a
978-3-030-87589-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC78.7.D53
$b
M56 2021
072
7
$a
UYT
$2
bicssc
072
7
$a
COM012000
$2
bisacsh
072
7
$a
UYT
$2
thema
072
7
$a
UYQV
$2
thema
082
0 4
$a
006.6
$2
23
090
$a
RC78.7.D53
$b
M685 2021
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Machine Learning in Medical Imaging
$h
[electronic resource] :
$b
12th International Workshop, MLMI 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
$c
edited by Chunfeng Lian ... [et al.].
246
3
$a
MLMI 2021
246
3
$a
MICCAI 2021
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xviii, 704 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
12966
490
1
$a
Image processing, computer vision, pattern recognition, and graphics
520
$a
This book constitutes the proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.* The 71 papers presented in this volume were carefully reviewed and selected from 92 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. *The workshop was held virtually.
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
0
$a
Diagnostic imaging
$x
Data processing
$v
Congresses.
$3
445765
650
0
$a
Artificial intelligence
$x
Medical applications
$v
Congresses.
$3
442992
650
1 4
$a
Image Processing and Computer Vision.
$3
274051
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Information Systems and Communication Service.
$3
274025
650
2 4
$a
Pattern Recognition.
$3
273706
650
2 4
$a
Computational Biology/Bioinformatics.
$3
274833
700
1
$a
Lian, Chunfeng.
$3
906925
710
2
$a
SpringerLink (Online service)
$3
273601
711
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
830
0
$a
Image processing, computer vision, pattern recognition, and graphics.
$3
823073
856
4 0
$u
https://doi.org/10.1007/978-3-030-87589-3
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000205980
電子館藏
1圖書
電子書
EB RC78.7.D53 M685 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-87589-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入