語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical foundations, reasoning a...
~
Heumann, Christian.
Statistical foundations, reasoning and inferencefor science and data science /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistical foundations, reasoning and inferenceby Goran Kauermann, Helmut Kuchenhoff, Christian Heumann.
其他題名:
for science and data science /
作者:
Kauermann, Goran.
其他作者:
Kuchenhoff, Helmut.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xiii, 356 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Mathematical statistics.
電子資源:
https://doi.org/10.1007/978-3-030-69827-0
ISBN:
9783030698270$q(electronic bk.)
Statistical foundations, reasoning and inferencefor science and data science /
Kauermann, Goran.
Statistical foundations, reasoning and inference
for science and data science /[electronic resource] :by Goran Kauermann, Helmut Kuchenhoff, Christian Heumann. - Cham :Springer International Publishing :2021. - xiii, 356 p. :ill., digital ;24 cm. - Springer series in statistics,2197-568X. - Springer series in statistics..
Introduction -- Background in Probability -- Parametric Statistical Models -- Maximum Likelihood Inference -- Bayesian Statistics -- Statistical Decisions -- Regression -- Bootstrapping -- Model Selection and Model Averaging -- Multivariate and Extreme Value Distributions -- Missing and Deficient Data -- Experiments and Causality.
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master's students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
ISBN: 9783030698270$q(electronic bk.)
Standard No.: 10.1007/978-3-030-69827-0doiSubjects--Topical Terms:
181877
Mathematical statistics.
LC Class. No.: QA276
Dewey Class. No.: 519.5
Statistical foundations, reasoning and inferencefor science and data science /
LDR
:02262nmm a2200337 a 4500
001
609648
003
DE-He213
005
20210930191909.0
006
m d
007
cr nn 008maaau
008
220222s2021 sz s 0 eng d
020
$a
9783030698270$q(electronic bk.)
020
$a
9783030698263$q(paper)
024
7
$a
10.1007/978-3-030-69827-0
$2
doi
035
$a
978-3-030-69827-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
090
$a
QA276
$b
.K21 2021
100
1
$a
Kauermann, Goran.
$3
855727
245
1 0
$a
Statistical foundations, reasoning and inference
$h
[electronic resource] :
$b
for science and data science /
$c
by Goran Kauermann, Helmut Kuchenhoff, Christian Heumann.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiii, 356 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer series in statistics,
$x
2197-568X
505
0
$a
Introduction -- Background in Probability -- Parametric Statistical Models -- Maximum Likelihood Inference -- Bayesian Statistics -- Statistical Decisions -- Regression -- Bootstrapping -- Model Selection and Model Averaging -- Multivariate and Extreme Value Distributions -- Missing and Deficient Data -- Experiments and Causality.
520
$a
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master's students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
650
0
$a
Mathematical statistics.
$3
181877
650
1 4
$a
Statistical Theory and Methods.
$3
274054
650
2 4
$a
Data Structures and Information Theory.
$3
825714
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
348605
700
1
$a
Kuchenhoff, Helmut.
$3
907339
700
1
$a
Heumann, Christian.
$3
285990
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Springer series in statistics.
$3
280826
856
4 0
$u
https://doi.org/10.1007/978-3-030-69827-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000206229
電子館藏
1圖書
電子書
EB QA276 .K21 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-69827-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入