語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Kernel mode decomposition and the pr...
~
Owhadi, Houman.
Kernel mode decomposition and the programming of kernels
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Kernel mode decomposition and the programming of kernelsby Houman Owhadi, Clint Scovel, Gene Ryan Yoo.
作者:
Owhadi, Houman.
其他作者:
Scovel, Clint.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
x, 118 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Regression analysis.
電子資源:
https://doi.org/10.1007/978-3-030-82171-5
ISBN:
9783030821715$q(electronic bk.)
Kernel mode decomposition and the programming of kernels
Owhadi, Houman.
Kernel mode decomposition and the programming of kernels
[electronic resource] /by Houman Owhadi, Clint Scovel, Gene Ryan Yoo. - Cham :Springer International Publishing :2021. - x, 118 p. :ill. (some col.), digital ;24 cm. - Surveys and tutorials in the applied mathematical sciences,v. 82199-4773 ;. - Surveys and tutorials in the applied mathematical sciences ;v.7..
Introduction -- Review -- The mode decomposition problem -- Kernel mode decomposition networks (KMDNets) -- Additional programming modules and squeezing -- Non-trigonometric waveform and iterated KMD -- Unknown base waveforms -- Crossing frequencies, vanishing modes, and noise -- Appendix.
This monograph demonstrates a new approach to the classical mode decomposition problem through nonlinear regression models, which achieve near-machine precision in the recovery of the modes. The presentation includes a review of generalized additive models, additive kernels/Gaussian processes, generalized Tikhonov regularization, empirical mode decomposition, and Synchrosqueezing, which are all related to and generalizable under the proposed framework. Although kernel methods have strong theoretical foundations, they require the prior selection of a good kernel. While the usual approach to this kernel selection problem is hyperparameter tuning, the objective of this monograph is to present an alternative (programming) approach to the kernel selection problem while using mode decomposition as a prototypical pattern recognition problem. In this approach, kernels are programmed for the task at hand through the programming of interpretable regression networks in the context of additive Gaussian processes. It is suitable for engineers, computer scientists, mathematicians, and students in these fields working on kernel methods, pattern recognition, and mode decomposition problems.
ISBN: 9783030821715$q(electronic bk.)
Standard No.: 10.1007/978-3-030-82171-5doiSubjects--Topical Terms:
181872
Regression analysis.
LC Class. No.: QA278.2 / .O84 2021
Dewey Class. No.: 519.536
Kernel mode decomposition and the programming of kernels
LDR
:02603nmm a2200337 a 4500
001
612434
003
DE-He213
005
20211203235627.0
006
m d
007
cr nn 008maaau
008
220526s2021 sz s 0 eng d
020
$a
9783030821715$q(electronic bk.)
020
$a
9783030821708$q(paper)
024
7
$a
10.1007/978-3-030-82171-5
$2
doi
035
$a
978-3-030-82171-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.2
$b
.O84 2021
072
7
$a
PBWH
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBWH
$2
thema
082
0 4
$a
519.536
$2
23
090
$a
QA278.2
$b
.O97 2021
100
1
$a
Owhadi, Houman.
$3
787672
245
1 0
$a
Kernel mode decomposition and the programming of kernels
$h
[electronic resource] /
$c
by Houman Owhadi, Clint Scovel, Gene Ryan Yoo.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
x, 118 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Surveys and tutorials in the applied mathematical sciences,
$x
2199-4773 ;
$v
v. 8
505
0
$a
Introduction -- Review -- The mode decomposition problem -- Kernel mode decomposition networks (KMDNets) -- Additional programming modules and squeezing -- Non-trigonometric waveform and iterated KMD -- Unknown base waveforms -- Crossing frequencies, vanishing modes, and noise -- Appendix.
520
$a
This monograph demonstrates a new approach to the classical mode decomposition problem through nonlinear regression models, which achieve near-machine precision in the recovery of the modes. The presentation includes a review of generalized additive models, additive kernels/Gaussian processes, generalized Tikhonov regularization, empirical mode decomposition, and Synchrosqueezing, which are all related to and generalizable under the proposed framework. Although kernel methods have strong theoretical foundations, they require the prior selection of a good kernel. While the usual approach to this kernel selection problem is hyperparameter tuning, the objective of this monograph is to present an alternative (programming) approach to the kernel selection problem while using mode decomposition as a prototypical pattern recognition problem. In this approach, kernels are programmed for the task at hand through the programming of interpretable regression networks in the context of additive Gaussian processes. It is suitable for engineers, computer scientists, mathematicians, and students in these fields working on kernel methods, pattern recognition, and mode decomposition problems.
650
0
$a
Regression analysis.
$3
181872
650
0
$a
Kernel functions.
$3
214209
650
0
$a
Decomposition (Mathematics)
$3
403666
650
1 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
567118
650
2 4
$a
Approximations and Expansions.
$3
281039
700
1
$a
Scovel, Clint.
$3
910930
700
1
$a
Yoo, Gene Ryan.
$3
910931
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Surveys and tutorials in the applied mathematical sciences ;
$v
v.7.
$3
860019
856
4 0
$u
https://doi.org/10.1007/978-3-030-82171-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000207908
電子館藏
1圖書
電子書
EB QA278.2 .O97 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-82171-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入