語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
How many zeroes?counting solutions o...
~
Mondal, Pinaki.
How many zeroes?counting solutions of systems of polynomials via toric geometry at infinity /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
How many zeroes?by Pinaki Mondal.
其他題名:
counting solutions of systems of polynomials via toric geometry at infinity /
作者:
Mondal, Pinaki.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xv, 352 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Toric varieties.
電子資源:
https://doi.org/10.1007/978-3-030-75174-6
ISBN:
9783030751746$q(electronic bk.)
How many zeroes?counting solutions of systems of polynomials via toric geometry at infinity /
Mondal, Pinaki.
How many zeroes?
counting solutions of systems of polynomials via toric geometry at infinity /[electronic resource] :by Pinaki Mondal. - Cham :Springer International Publishing :2021. - xv, 352 p. :ill. (some col.), digital ;24 cm. - CMS/CAIMS books in mathematics,v. 22730-6518 ;. - Cms/caims books in mathematics ;v. 2..
This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field K. The text collects and synthesizes a number of works on Bernstein's theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein's original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to a second-year graduate students.
ISBN: 9783030751746$q(electronic bk.)
Standard No.: 10.1007/978-3-030-75174-6doiSubjects--Topical Terms:
544871
Toric varieties.
LC Class. No.: QA564 / .M65 2021
Dewey Class. No.: 516.35
How many zeroes?counting solutions of systems of polynomials via toric geometry at infinity /
LDR
:02196nmm 22003255a 4500
001
614046
003
DE-He213
005
20211107025328.0
006
m d
007
cr nn 008maaau
008
220627s2021 sz s 0 eng d
020
$a
9783030751746$q(electronic bk.)
020
$a
9783030751739$q(paper)
024
7
$a
10.1007/978-3-030-75174-6
$2
doi
035
$a
978-3-030-75174-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA564
$b
.M65 2021
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
090
$a
QA564
$b
.M741 2021
100
1
$a
Mondal, Pinaki.
$3
912192
245
1 0
$a
How many zeroes?
$h
[electronic resource] :
$b
counting solutions of systems of polynomials via toric geometry at infinity /
$c
by Pinaki Mondal.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xv, 352 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
CMS/CAIMS books in mathematics,
$x
2730-6518 ;
$v
v. 2
520
$a
This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field K. The text collects and synthesizes a number of works on Bernstein's theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein's original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to a second-year graduate students.
650
0
$a
Toric varieties.
$3
544871
650
0
$a
Polynomials.
$3
184760
650
1 4
$a
Algebraic Geometry.
$3
274807
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Cms/caims books in mathematics ;
$v
v. 2.
$3
912193
856
4 0
$u
https://doi.org/10.1007/978-3-030-75174-6
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000207576
電子館藏
1圖書
電子書
EB QA564 .M741 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-75174-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入