語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data warehousing and analyticsfuelin...
~
Rahayu, Wenny.
Data warehousing and analyticsfueling the data engine /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Data warehousing and analyticsby David Taniar, Wenny Rahayu.
其他題名:
fueling the data engine /
作者:
Taniar, David.
其他作者:
Rahayu, Wenny.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
1 online resource (xviii, 435 p.) :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Data warehousing.
電子資源:
https://doi.org/10.1007/978-3-030-81979-8
ISBN:
9783030819798$q(electronic bk.)
Data warehousing and analyticsfueling the data engine /
Taniar, David.
Data warehousing and analytics
fueling the data engine /[electronic resource] :by David Taniar, Wenny Rahayu. - Cham :Springer International Publishing :2021. - 1 online resource (xviii, 435 p.) :ill. (some col.), digital ;24 cm. - Data-centric systems and applications,2197-974X. - Data-centric systems and applications..
1. Introduction -- Part I: Star Schema -- 2. Simple Star Schemas -- 3. Creating Facts and Dimensions: More Complex Processes -- Part II: Snowflake and Bridge Tables -- 4. Hierarchies -- 5. Bridge Tables -- 6. Temporal Data Warehousing -- Part III: Advanced Dimension -- 7. Determinant Dimensions -- 8. Junk Dimensions -- 9. Dimension Keys -- 10. One-Attribute Dimensions -- Part IV: Multi-Fact and Multi-Input -- 11. Multi-Fact Star Schemas -- 12. Slicing a Fact -- 13. Multi-Input Operational Databases -- Part V: Data Warehousing Granularity and Evolution -- 14. Data Warehousing Granularity and Levels of Aggregation -- 15. Designing Lowest-Level Star Schemas -- 16. Levels of Aggregation: Adding and Removing Dimensions -- 17. Levels of Aggregation and Bridge Tables -- 18. Active Data Warehousing -- Part VI: OLAP, Business Intelligence, and Data Analytics -- 19. Online Analytical Processing (OLAP) -- 20. Pre- and Post-Data Warehousing -- 21. Data Analytics for Data Warehousing.
This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics) This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.
ISBN: 9783030819798$q(electronic bk.)
Standard No.: 10.1007/978-3-030-81979-8doiSubjects--Topical Terms:
199894
Data warehousing.
LC Class. No.: QA76.9.D37 / T36 2021
Dewey Class. No.: 005.745
Data warehousing and analyticsfueling the data engine /
LDR
:03676nmm a2200337 a 4500
001
614775
003
DE-He213
005
20220204191329.0
006
m o d
007
cr nn 008maaau
008
220802s2021 sz s 0 eng d
020
$a
9783030819798$q(electronic bk.)
020
$a
9783030819781$q(paper)
024
7
$a
10.1007/978-3-030-81979-8
$2
doi
035
$a
978-3-030-81979-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D37
$b
T36 2021
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
005.745
$2
23
090
$a
QA76.9.D37
$b
T164 2021
100
1
$a
Taniar, David.
$3
208365
245
1 0
$a
Data warehousing and analytics
$h
[electronic resource] :
$b
fueling the data engine /
$c
by David Taniar, Wenny Rahayu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
1 online resource (xviii, 435 p.) :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Data-centric systems and applications,
$x
2197-974X
505
0
$a
1. Introduction -- Part I: Star Schema -- 2. Simple Star Schemas -- 3. Creating Facts and Dimensions: More Complex Processes -- Part II: Snowflake and Bridge Tables -- 4. Hierarchies -- 5. Bridge Tables -- 6. Temporal Data Warehousing -- Part III: Advanced Dimension -- 7. Determinant Dimensions -- 8. Junk Dimensions -- 9. Dimension Keys -- 10. One-Attribute Dimensions -- Part IV: Multi-Fact and Multi-Input -- 11. Multi-Fact Star Schemas -- 12. Slicing a Fact -- 13. Multi-Input Operational Databases -- Part V: Data Warehousing Granularity and Evolution -- 14. Data Warehousing Granularity and Levels of Aggregation -- 15. Designing Lowest-Level Star Schemas -- 16. Levels of Aggregation: Adding and Removing Dimensions -- 17. Levels of Aggregation and Bridge Tables -- 18. Active Data Warehousing -- Part VI: OLAP, Business Intelligence, and Data Analytics -- 19. Online Analytical Processing (OLAP) -- 20. Pre- and Post-Data Warehousing -- 21. Data Analytics for Data Warehousing.
520
$a
This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics) This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.
650
0
$a
Data warehousing.
$3
199894
650
1 4
$a
Database Management.
$3
273994
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Data Analysis and Big Data.
$3
913147
650
2 4
$a
Information Storage and Retrieval.
$3
274190
700
1
$a
Rahayu, Wenny.
$3
913146
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Data-centric systems and applications.
$3
568971
856
4 0
$u
https://doi.org/10.1007/978-3-030-81979-8
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000208074
電子館藏
1圖書
電子書
EB QA76.9.D37 T164 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-81979-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入